Contract Overview
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Contract Source Code Verified (Exact Match)
Contract Name:
Seaport
Compiler Version
v0.8.24+commit.e11b9ed9
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { Consideration } from "./lib/Consideration.sol"; /** * @title Seaport * @custom:version 1.6 * @author 0age (0age.eth) * @custom:coauthor d1ll0n (d1ll0n.eth) * @custom:coauthor transmissions11 (t11s.eth) * @custom:coauthor James Wenzel (emo.eth) * @custom:coauthor Daniel Viau (snotrocket.eth) * @custom:contributor Kartik (slokh.eth) * @custom:contributor LeFevre (lefevre.eth) * @custom:contributor Joseph Schiarizzi (CupOJoseph.eth) * @custom:contributor Aspyn Palatnick (stuckinaboot.eth) * @custom:contributor Stephan Min (stephanm.eth) * @custom:contributor Ryan Ghods (ralxz.eth) * @custom:contributor hack3r-0m (hack3r-0m.eth) * @custom:contributor Diego Estevez (antidiego.eth) * @custom:contributor Chomtana (chomtana.eth) * @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth) * @custom:contributor 0xBeans (0xBeans.eth) * @custom:contributor 0x4non (punkdev.eth) * @custom:contributor Laurence E. Day (norsefire.eth) * @custom:contributor vectorized.eth (vectorized.eth) * @custom:contributor karmacoma (karmacoma.eth) * @custom:contributor horsefacts (horsefacts.eth) * @custom:contributor UncarvedBlock (uncarvedblock.eth) * @custom:contributor Zoraiz Mahmood (zorz.eth) * @custom:contributor William Poulin (wpoulin.eth) * @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth) * @custom:contributor tserg (tserg.eth) * @custom:contributor cygaar (cygaar.eth) * @custom:contributor Meta0xNull (meta0xnull.eth) * @custom:contributor gpersoon (gpersoon.eth) * @custom:contributor Matt Solomon (msolomon.eth) * @custom:contributor Weikang Song (weikangs.eth) * @custom:contributor zer0dot (zer0dot.eth) * @custom:contributor Mudit Gupta (mudit.eth) * @custom:contributor leonardoalt (leoalt.eth) * @custom:contributor cmichel (cmichel.eth) * @custom:contributor PraneshASP (pranesh.eth) * @custom:contributor JasperAlexander (jasperalexander.eth) * @custom:contributor Ellahi (ellahi.eth) * @custom:contributor zaz (1zaz1.eth) * @custom:contributor berndartmueller (berndartmueller.eth) * @custom:contributor dmfxyz (dmfxyz.eth) * @custom:contributor daltoncoder (dontkillrobots.eth) * @custom:contributor 0xf4ce (0xf4ce.eth) * @custom:contributor phaze (phaze.eth) * @custom:contributor hrkrshnn (hrkrshnn.eth) * @custom:contributor axic (axic.eth) * @custom:contributor leastwood (leastwood.eth) * @custom:contributor 0xsanson (sanson.eth) * @custom:contributor blockdev (blockd3v.eth) * @custom:contributor fiveoutofnine (fiveoutofnine.eth) * @custom:contributor shuklaayush (shuklaayush.eth) * @custom:contributor dravee (dravee.eth) * @custom:contributor 0xPatissier * @custom:contributor pcaversaccio * @custom:contributor David Eiber * @custom:contributor csanuragjain * @custom:contributor sach1r0 * @custom:contributor twojoy0 * @custom:contributor ori_dabush * @custom:contributor Daniel Gelfand * @custom:contributor okkothejawa * @custom:contributor FlameHorizon * @custom:contributor vdrg * @custom:contributor dmitriia * @custom:contributor bokeh-eth * @custom:contributor asutorufos * @custom:contributor rfart(rfa) * @custom:contributor Riley Holterhus * @custom:contributor big-tech-sux * @notice Seaport is a generalized native token/ERC20/ERC721/ERC1155 * marketplace with lightweight methods for common routes as well as * more flexible methods for composing advanced orders or groups of * orders. Each order contains an arbitrary number of items that may be * spent (the "offer") along with an arbitrary number of items that must * be received back by the indicated recipients (the "consideration"). */ contract Seaport is Consideration { /** * @notice Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Consideration(conduitController) {} /** * @dev Internal pure function to retrieve and return the name of this * contract. * * @return The name of this contract. */ function _name() internal pure override returns (string memory) { // Return the name of the contract. assembly { mstore(0x20, 0x20) mstore(0x47, 0x07536561706f7274) return(0x20, 0x60) } } /** * @dev Internal pure function to retrieve the name of this contract as a * string that will be used to derive the name hash in the constructor. * * @return The name of this contract as a string. */ function _nameString() internal pure override returns (string memory) { // Return the name of the contract. return "Seaport"; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ConsiderationInterface } from "seaport-types/src/interfaces/ConsiderationInterface.sol"; import { AdvancedOrder, BasicOrderParameters, CriteriaResolver, Execution, Fulfillment, FulfillmentComponent, Order, OrderComponents } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { OrderCombiner } from "./OrderCombiner.sol"; import { CalldataStart, CalldataPointer } from "seaport-types/src/helpers/PointerLibraries.sol"; import { Offset_fulfillAdvancedOrder_criteriaResolvers, Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts, Offset_fulfillAvailableAdvancedOrders_criteriaResolvers, Offset_fulfillAvailableAdvancedOrders_offerFulfillments, Offset_fulfillAvailableOrders_considerationFulfillments, Offset_fulfillAvailableOrders_offerFulfillments, Offset_matchAdvancedOrders_criteriaResolvers, Offset_matchAdvancedOrders_fulfillments, Offset_matchOrders_fulfillments, OrderParameters_counter_offset } from "seaport-types/src/lib/ConsiderationConstants.sol"; /** * @title Consideration * @author 0age (0age.eth) * @custom:coauthor d1ll0n (d1ll0n.eth) * @custom:coauthor transmissions11 (t11s.eth) * @custom:coauthor James Wenzel (emo.eth) * @custom:coauthor Daniel Viau (snotrocket.eth) * @custom:version 1.6 * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155 * marketplace that provides lightweight methods for common routes as * well as more flexible methods for composing advanced orders or groups * of orders. Each order contains an arbitrary number of items that may * be spent (the "offer") along with an arbitrary number of items that * must be received back by the indicated recipients (the * "consideration"). */ contract Consideration is ConsiderationInterface, OrderCombiner { /** * @notice Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) OrderCombiner(conduitController) {} /** * @notice Accept native token transfers during execution that may then be * used to facilitate native token transfers, where any tokens that * remain will be transferred to the caller. Native tokens are only * acceptable mid-fulfillment (and not during basic fulfillment). */ receive() external payable { // Ensure the reentrancy guard is currently set to accept native tokens. _assertAcceptingNativeTokens(); } /** * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by * supplying Ether (or other native tokens), ERC20 tokens, an ERC721 * item, or an ERC1155 item as consideration. Six permutations are * supported: Native token to ERC721, Native token to ERC1155, ERC20 * to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to * ERC20 (with native tokens supplied as msg.value). For an order to * be eligible for fulfillment via this method, it must contain a * single offer item (though that item may have a greater amount if * the item is not an ERC721). An arbitrary number of "additional * recipients" may also be supplied which will each receive native * tokens or ERC20 items from the fulfiller as consideration. Refer * to the documentation for a more comprehensive summary of how to * utilize this method and what orders are compatible with it. * * @custom:param parameters Additional information on the fulfilled order. * Note that the offerer and the fulfiller must * first approve this contract (or their chosen * conduit if indicated) before any tokens can be * transferred. Also note that contract recipients * of ERC1155 consideration items must implement * `onERC1155Received` to receive those items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder( /** * @custom:name parameters */ BasicOrderParameters calldata ) external payable override returns (bool fulfilled) { // Validate and fulfill the basic order. fulfilled = _validateAndFulfillBasicOrder(); } /** * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by * supplying Ether (or other native tokens), ERC20 tokens, an ERC721 * item, or an ERC1155 item as consideration. Six permutations are * supported: Native token to ERC721, Native token to ERC1155, ERC20 * to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to * ERC20 (with native tokens supplied as msg.value). For an order to * be eligible for fulfillment via this method, it must contain a * single offer item (though that item may have a greater amount if * the item is not an ERC721). An arbitrary number of "additional * recipients" may also be supplied which will each receive native * tokens or ERC20 items from the fulfiller as consideration. Refer * to the documentation for a more comprehensive summary of how to * utilize this method and what orders are compatible with it. Note * that this function costs less gas than `fulfillBasicOrder` due to * the zero bytes in the function selector (0x00000000) which also * results in earlier function dispatch. * * @custom:param parameters Additional information on the fulfilled order. * Note that the offerer and the fulfiller must * first approve this contract (or their chosen * conduit if indicated) before any tokens can be * transferred. Also note that contract recipients * of ERC1155 consideration items must implement * `onERC1155Received` to receive those items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder_efficient_6GL6yc( /** * @custom:name parameters */ BasicOrderParameters calldata ) external payable override returns (bool fulfilled) { // Validate and fulfill the basic order. fulfilled = _validateAndFulfillBasicOrder(); } /** * @notice Fulfill an order with an arbitrary number of items for offer and * consideration. Note that this function does not support * criteria-based orders or partial filling of orders (though * filling the remainder of a partially-filled order is supported). * * @custom:param order The order to fulfill. Note that both the * offerer and the fulfiller must first approve * this contract (or the corresponding conduit if * indicated) to transfer any relevant tokens on * their behalf and that contracts must implement * `onERC1155Received` to receive ERC1155 tokens * as consideration. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used (and direct approvals set on * this contract). * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillOrder( /** * @custom:name order */ Order calldata, bytes32 fulfillerConduitKey ) external payable override returns (bool fulfilled) { // Convert order to "advanced" order, then validate and fulfill it. fulfilled = _validateAndFulfillAdvancedOrder( _toAdvancedOrderReturnType(_decodeOrderAsAdvancedOrder)( CalldataStart.pptr() ), new CriteriaResolver[](0), // No criteria resolvers supplied. fulfillerConduitKey, msg.sender ); } /** * @notice Fill an order, fully or partially, with an arbitrary number of * items for offer and consideration alongside criteria resolvers * containing specific token identifiers and associated proofs. * * @custom:param advancedOrder The order to fulfill along with the * fraction of the order to attempt to fill. * Note that both the offerer and the * fulfiller must first approve this * contract (or their conduit if indicated * by the order) to transfer any relevant * tokens on their behalf and that contracts * must implement `onERC1155Received` to * receive ERC1155 tokens as consideration. * Also note that all offer and * consideration components must have no * remainder after multiplication of the * respective amount with the supplied * fraction for the partial fill to be * considered valid. * @custom:param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token identifier * on the token in question is valid and * that no associated proof needs to be * supplied. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used (and * direct approvals set on this contract). * @param recipient The intended recipient for all received * items, with `address(0)` indicating that * the caller should receive the items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillAdvancedOrder( /** * @custom:name advancedOrder */ AdvancedOrder calldata, /** * @custom:name criteriaResolvers */ CriteriaResolver[] calldata, bytes32 fulfillerConduitKey, address recipient ) external payable override returns (bool fulfilled) { // Validate and fulfill the order. fulfilled = _validateAndFulfillAdvancedOrder( _toAdvancedOrderReturnType(_decodeAdvancedOrder)( CalldataStart.pptr() ), _toCriteriaResolversReturnType(_decodeCriteriaResolvers)( CalldataStart.pptrOffset( Offset_fulfillAdvancedOrder_criteriaResolvers ) ), fulfillerConduitKey, _substituteCallerForEmptyRecipient(recipient) ); } /** * @notice Attempt to fill a group of orders, each with an arbitrary number * of items for offer and consideration. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * Note that this function does not support criteria-based orders or * partial filling of orders (though filling the remainder of a * partially-filled order is supported). * * @custom:param orders The orders to fulfill. Note that * both the offerer and the * fulfiller must first approve this * contract (or the corresponding * conduit if indicated) to transfer * any relevant tokens on their * behalf and that contracts must * implement `onERC1155Received` to * receive ERC1155 tokens as * consideration. * @custom:param offerFulfillments An array of FulfillmentComponent * arrays indicating which offer * items to attempt to aggregate * when preparing executions. Note * that any offer items not included * as part of a fulfillment will be * sent unaggregated to the caller. * @custom:param considerationFulfillments An array of FulfillmentComponent * arrays indicating which * consideration items to attempt to * aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what * conduit, if any, to source the * fulfiller's token approvals from. * The zero hash signifies that no * conduit should be used (and * direct approvals set on this * contract). * @param maximumFulfilled The maximum number of orders to * fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function fulfillAvailableOrders( /** * @custom:name orders */ Order[] calldata, /** * @custom:name offerFulfillments */ FulfillmentComponent[][] calldata, /** * @custom:name considerationFulfillments */ FulfillmentComponent[][] calldata, bytes32 fulfillerConduitKey, uint256 maximumFulfilled ) external payable override returns ( bool[] memory /* availableOrders */, Execution[] memory /* executions */ ) { // Convert orders to "advanced" orders and fulfill all available orders. return _fulfillAvailableAdvancedOrders( _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)( CalldataStart.pptr() ), // Convert to advanced orders. new CriteriaResolver[](0), // No criteria resolvers supplied. _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptrOffset( Offset_fulfillAvailableOrders_offerFulfillments ) ), _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptrOffset( Offset_fulfillAvailableOrders_considerationFulfillments ) ), fulfillerConduitKey, msg.sender, maximumFulfilled ); } /** * @notice Attempt to fill a group of orders, fully or partially, with an * arbitrary number of items for offer and consideration per order * alongside criteria resolvers containing specific token * identifiers and associated proofs. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * * @custom:param advancedOrders The orders to fulfill along with * the fraction of those orders to * attempt to fill. Note that both * the offerer and the fulfiller * must first approve this contract * (or their conduit if indicated by * the order) to transfer any * relevant tokens on their behalf * and that contracts must implement * `onERC1155Received` to receive * ERC1155 tokens as consideration. * Also note that all offer and * consideration components must * have no remainder after * multiplication of the respective * amount with the supplied fraction * for an order's partial fill * amount to be considered valid. * @custom:param criteriaResolvers An array where each element * contains a reference to a * specific offer or consideration, * a token identifier, and a proof * that the supplied token * identifier is contained in the * merkle root held by the item in * question's criteria element. Note * that an empty criteria indicates * that any (transferable) token * identifier on the token in * question is valid and that no * associated proof needs to be * supplied. * @custom:param offerFulfillments An array of FulfillmentComponent * arrays indicating which offer * items to attempt to aggregate * when preparing executions. Note * that any offer items not included * as part of a fulfillment will be * sent unaggregated to the caller. * @custom:param considerationFulfillments An array of FulfillmentComponent * arrays indicating which * consideration items to attempt to * aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what * conduit, if any, to source the * fulfiller's token approvals from. * The zero hash signifies that no * conduit should be used (and * direct approvals set on this * contract). * @param recipient The intended recipient for all * received items, with `address(0)` * indicating that the caller should * receive the offer items. * @param maximumFulfilled The maximum number of orders to * fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function fulfillAvailableAdvancedOrders( /** * @custom:name advancedOrders */ AdvancedOrder[] calldata, /** * @custom:name criteriaResolvers */ CriteriaResolver[] calldata, /** * @custom:name offerFulfillments */ FulfillmentComponent[][] calldata, /** * @custom:name considerationFulfillments */ FulfillmentComponent[][] calldata, bytes32 fulfillerConduitKey, address recipient, uint256 maximumFulfilled ) external payable override returns ( bool[] memory /* availableOrders */, Execution[] memory /* executions */ ) { // Fulfill all available orders. return _fulfillAvailableAdvancedOrders( _toAdvancedOrdersReturnType(_decodeAdvancedOrders)( CalldataStart.pptr() ), _toCriteriaResolversReturnType(_decodeCriteriaResolvers)( CalldataStart.pptrOffset( Offset_fulfillAvailableAdvancedOrders_criteriaResolvers ) ), _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptrOffset( Offset_fulfillAvailableAdvancedOrders_offerFulfillments ) ), _toNestedFulfillmentComponentsReturnType( _decodeNestedFulfillmentComponents )( CalldataStart.pptrOffset( Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts ) ), fulfillerConduitKey, _substituteCallerForEmptyRecipient(recipient), maximumFulfilled ); } /** * @notice Match an arbitrary number of orders, each with an arbitrary * number of items for offer and consideration along with a set of * fulfillments allocating offer components to consideration * components. Note that this function does not support * criteria-based or partial filling of orders (though filling the * remainder of a partially-filled order is supported). Any unspent * offer item amounts or native tokens will be transferred to the * caller. * * @custom:param orders The orders to match. Note that both the * offerer and fulfiller on each order must first * approve this contract (or their conduit if * indicated by the order) to transfer any * relevant tokens on their behalf and each * consideration recipient must implement * `onERC1155Received` to receive ERC1155 tokens. * @custom:param fulfillments An array of elements allocating offer * components to consideration components. Note * that each consideration component must be * fully met for the match operation to be valid, * and that any unspent offer items will be sent * unaggregated to the caller. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or native * tokens will not be reflected as part of this array. */ function matchOrders( /** * @custom:name orders */ Order[] calldata, /** * @custom:name fulfillments */ Fulfillment[] calldata ) external payable override returns (Execution[] memory /* executions */) { // Convert to advanced, validate, and match orders using fulfillments. return _matchAdvancedOrders( _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)( CalldataStart.pptr() ), new CriteriaResolver[](0), // No criteria resolvers supplied. _toFulfillmentsReturnType(_decodeFulfillments)( CalldataStart.pptrOffset(Offset_matchOrders_fulfillments) ), msg.sender ); } /** * @notice Match an arbitrary number of full, partial, or contract orders, * each with an arbitrary number of items for offer and * consideration, supplying criteria resolvers containing specific * token identifiers and associated proofs as well as fulfillments * allocating offer components to consideration components. Any * unspent offer item amounts will be transferred to the designated * recipient (with the null address signifying to use the caller) * and any unspent native tokens will be returned to the caller. * * @custom:param advancedOrders The advanced orders to match. Note that * both the offerer and fulfiller on each * order must first approve this contract * (or their conduit if indicated by the * order) to transfer any relevant tokens on * their behalf and each consideration * recipient must implement * `onERC1155Received` to receive ERC1155 * tokens. Also note that the offer and * consideration components for each order * must have no remainder after multiplying * the respective amount with the supplied * fraction for the group of partial fills * to be considered valid. * @custom:param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token identifier * on the token in question is valid and * that no associated proof needs to be * supplied. * @custom:param fulfillments An array of elements allocating offer * components to consideration components. * Note that each consideration component * must be fully met for the match operation * to be valid, and that any unspent offer * items will be sent unaggregated to the * designated recipient. * @param recipient The intended recipient for all unspent * offer item amounts, or the caller if the * null address is supplied. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of this * array. */ function matchAdvancedOrders( /** * @custom:name advancedOrders */ AdvancedOrder[] calldata, /** * @custom:name criteriaResolvers */ CriteriaResolver[] calldata, /** * @custom:name fulfillments */ Fulfillment[] calldata, address recipient ) external payable override returns (Execution[] memory /* executions */) { // Validate and match the advanced orders using supplied fulfillments. return _matchAdvancedOrders( _toAdvancedOrdersReturnType(_decodeAdvancedOrders)( CalldataStart.pptr() ), _toCriteriaResolversReturnType(_decodeCriteriaResolvers)( CalldataStart.pptrOffset( Offset_matchAdvancedOrders_criteriaResolvers ) ), _toFulfillmentsReturnType(_decodeFulfillments)( CalldataStart.pptrOffset( Offset_matchAdvancedOrders_fulfillments ) ), _substituteCallerForEmptyRecipient(recipient) ); } /** * @notice Cancel an arbitrary number of orders. Note that only the offerer * or the zone of a given order may cancel it. Callers should ensure * that the intended order was cancelled by calling `getOrderStatus` * and confirming that `isCancelled` returns `true`. * * @param orders The orders to cancel. * * @return cancelled A boolean indicating whether the supplied orders have * been successfully cancelled. */ function cancel( OrderComponents[] calldata orders ) external override returns (bool cancelled) { // Cancel the orders. cancelled = _cancel(orders); } /** * @notice Validate an arbitrary number of orders, thereby registering their * signatures as valid and allowing the fulfiller to skip signature * verification on fulfillment. Note that validated orders may still * be unfulfillable due to invalid item amounts or other factors; * callers should determine whether validated orders are fulfillable * by simulating the fulfillment call prior to execution. Also note * that anyone can validate a signed order, but only the offerer can * validate an order without supplying a signature. * * @custom:param orders The orders to validate. * * @return validated A boolean indicating whether the supplied orders have * been successfully validated. */ function validate( /** * @custom:name orders */ Order[] calldata ) external override returns (bool /* validated */) { return _validate(_toOrdersReturnType(_decodeOrders)(CalldataStart.pptr())); } /** * @notice Cancel all orders from a given offerer with a given zone in bulk * by incrementing a counter. Note that only the offerer may * increment the counter. * * @return newCounter The new counter. */ function incrementCounter() external override returns (uint256 newCounter) { // Increment current counter for the supplied offerer. Note that the // counter is incremented by a large, quasi-random interval. newCounter = _incrementCounter(); } /** * @notice Retrieve the order hash for a given order. * * @custom:param order The components of the order. * * @return orderHash The order hash. */ function getOrderHash( /** * @custom:name order */ OrderComponents calldata ) external view override returns (bytes32 orderHash) { CalldataPointer orderPointer = CalldataStart.pptr(); // Derive order hash by supplying order parameters along with counter. orderHash = _deriveOrderHash( _toOrderParametersReturnType( _decodeOrderComponentsAsOrderParameters )(orderPointer), // Read order counter orderPointer.offset(OrderParameters_counter_offset).readUint256() ); } /** * @notice Retrieve the status of a given order by hash, including whether * the order has been cancelled or validated and the fraction of the * order that has been filled. Since the _orderStatus[orderHash] * does not get set for contract orders, getOrderStatus will always * return (false, false, 0, 0) for those hashes. Note that this * function is susceptible to view reentrancy and so should be used * with care when calling from other contracts. * * @param orderHash The order hash in question. * * @return isValidated A boolean indicating whether the order in question * has been validated (i.e. previously approved or * partially filled). * @return isCancelled A boolean indicating whether the order in question * has been cancelled. * @return totalFilled The total portion of the order that has been filled * (i.e. the "numerator"). * @return totalSize The total size of the order that is either filled or * unfilled (i.e. the "denominator"). */ function getOrderStatus( bytes32 orderHash ) external view override returns ( bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize ) { // Retrieve the order status using the order hash. return _getOrderStatus(orderHash); } /** * @notice Retrieve the current counter for a given offerer. * * @param offerer The offerer in question. * * @return counter The current counter. */ function getCounter( address offerer ) external view override returns (uint256 counter) { // Return the counter for the supplied offerer. counter = _getCounter(offerer); } /** * @notice Retrieve configuration information for this contract. * * @return version The contract version. * @return domainSeparator The domain separator for this contract. * @return conduitController The conduit Controller set for this contract. */ function information() external view override returns ( string memory version, bytes32 domainSeparator, address conduitController ) { // Return the information for this contract. return _information(); } /** * @dev Gets the contract offerer nonce for the specified contract offerer. * Note that this function is susceptible to view reentrancy and so * should be used with care when calling from other contracts. * * @param contractOfferer The contract offerer for which to get the nonce. * * @return nonce The contract offerer nonce. */ function getContractOffererNonce( address contractOfferer ) external view override returns (uint256 nonce) { nonce = _contractNonces[contractOfferer]; } /** * @notice Retrieve the name of this contract. * * @return contractName The name of this contract. */ function name() external pure override returns (string memory /* contractName */) { // Return the name of the contract. return _name(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { AdvancedOrder, BasicOrderParameters, CriteriaResolver, Execution, Fulfillment, FulfillmentComponent, Order, OrderComponents } from "../lib/ConsiderationStructs.sol"; /** * @title ConsiderationInterface * @author 0age * @custom:version 1.6 * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155 * marketplace. It minimizes external calls to the greatest extent * possible and provides lightweight methods for common routes as well * as more flexible methods for composing advanced orders. * * @dev ConsiderationInterface contains all external function interfaces for * Consideration. */ interface ConsiderationInterface { /** * @notice Fulfill an order offering an ERC721 token by supplying Ether (or * the native token for the given chain) as consideration for the * order. An arbitrary number of "additional recipients" may also be * supplied which will each receive native tokens from the fulfiller * as consideration. * * @param parameters Additional information on the fulfilled order. Note * that the offerer must first approve this contract (or * their preferred conduit if indicated by the order) for * their offered ERC721 token to be transferred. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder( BasicOrderParameters calldata parameters ) external payable returns (bool fulfilled); /** * @notice Fulfill an order with an arbitrary number of items for offer and * consideration. Note that this function does not support * criteria-based orders or partial filling of orders (though * filling the remainder of a partially-filled order is supported). * * @param order The order to fulfill. Note that both the * offerer and the fulfiller must first approve * this contract (or the corresponding conduit if * indicated) to transfer any relevant tokens on * their behalf and that contracts must implement * `onERC1155Received` to receive ERC1155 tokens * as consideration. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillOrder( Order calldata order, bytes32 fulfillerConduitKey ) external payable returns (bool fulfilled); /** * @notice Fill an order, fully or partially, with an arbitrary number of * items for offer and consideration alongside criteria resolvers * containing specific token identifiers and associated proofs. * * @param advancedOrder The order to fulfill along with the fraction * of the order to attempt to fill. Note that * both the offerer and the fulfiller must first * approve this contract (or their preferred * conduit if indicated by the order) to transfer * any relevant tokens on their behalf and that * contracts must implement `onERC1155Received` * to receive ERC1155 tokens as consideration. * Also note that all offer and consideration * components must have no remainder after * multiplication of the respective amount with * the supplied fraction for the partial fill to * be considered valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a proof * that the supplied token identifier is * contained in the merkle root held by the item * in question's criteria element. Note that an * empty criteria indicates that any * (transferable) token identifier on the token * in question is valid and that no associated * proof needs to be supplied. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * @param recipient The intended recipient for all received items, * with `address(0)` indicating that the caller * should receive the items. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillAdvancedOrder( AdvancedOrder calldata advancedOrder, CriteriaResolver[] calldata criteriaResolvers, bytes32 fulfillerConduitKey, address recipient ) external payable returns (bool fulfilled); /** * @notice Attempt to fill a group of orders, each with an arbitrary number * of items for offer and consideration. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * Note that this function does not support criteria-based orders or * partial filling of orders (though filling the remainder of a * partially-filled order is supported). * * @param orders The orders to fulfill. Note that both * the offerer and the fulfiller must first * approve this contract (or the * corresponding conduit if indicated) to * transfer any relevant tokens on their * behalf and that contracts must implement * `onERC1155Received` to receive ERC1155 * tokens as consideration. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used, with * direct approvals set on this contract. * @param maximumFulfilled The maximum number of orders to fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of * this array. */ function fulfillAvailableOrders( Order[] calldata orders, FulfillmentComponent[][] calldata offerFulfillments, FulfillmentComponent[][] calldata considerationFulfillments, bytes32 fulfillerConduitKey, uint256 maximumFulfilled ) external payable returns (bool[] memory availableOrders, Execution[] memory executions); /** * @notice Attempt to fill a group of orders, fully or partially, with an * arbitrary number of items for offer and consideration per order * alongside criteria resolvers containing specific token * identifiers and associated proofs. Any order that is not * currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * * @param advancedOrders The orders to fulfill along with the * fraction of those orders to attempt to * fill. Note that both the offerer and the * fulfiller must first approve this * contract (or their preferred conduit if * indicated by the order) to transfer any * relevant tokens on their behalf and that * contracts must implement * `onERC1155Received` to enable receipt of * ERC1155 tokens as consideration. Also * note that all offer and consideration * components must have no remainder after * multiplication of the respective amount * with the supplied fraction for an * order's partial fill amount to be * considered valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token * identifier on the token in question is * valid and that no associated proof needs * to be supplied. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used, with * direct approvals set on this contract. * @param recipient The intended recipient for all received * items, with `address(0)` indicating that * the caller should receive the items. * @param maximumFulfilled The maximum number of orders to fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of * this array. */ function fulfillAvailableAdvancedOrders( AdvancedOrder[] calldata advancedOrders, CriteriaResolver[] calldata criteriaResolvers, FulfillmentComponent[][] calldata offerFulfillments, FulfillmentComponent[][] calldata considerationFulfillments, bytes32 fulfillerConduitKey, address recipient, uint256 maximumFulfilled ) external payable returns (bool[] memory availableOrders, Execution[] memory executions); /** * @notice Match an arbitrary number of orders, each with an arbitrary * number of items for offer and consideration along with a set of * fulfillments allocating offer components to consideration * components. Note that this function does not support * criteria-based or partial filling of orders (though filling the * remainder of a partially-filled order is supported). Any unspent * offer item amounts or native tokens will be transferred to the * caller. * * @param orders The orders to match. Note that both the offerer and * fulfiller on each order must first approve this * contract (or their conduit if indicated by the order) * to transfer any relevant tokens on their behalf and * each consideration recipient must implement * `onERC1155Received` to enable ERC1155 token receipt. * @param fulfillments An array of elements allocating offer components to * consideration components. Note that each * consideration component must be fully met for the * match operation to be valid. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or * native tokens will not be reflected as part of this * array. */ function matchOrders( Order[] calldata orders, Fulfillment[] calldata fulfillments ) external payable returns (Execution[] memory executions); /** * @notice Match an arbitrary number of full or partial orders, each with an * arbitrary number of items for offer and consideration, supplying * criteria resolvers containing specific token identifiers and * associated proofs as well as fulfillments allocating offer * components to consideration components. Any unspent offer item * amounts will be transferred to the designated recipient (with the * null address signifying to use the caller) and any unspent native * tokens will be returned to the caller. * * @param orders The advanced orders to match. Note that both the * offerer and fulfiller on each order must first * approve this contract (or a preferred conduit if * indicated by the order) to transfer any relevant * tokens on their behalf and each consideration * recipient must implement `onERC1155Received` in * order to receive ERC1155 tokens. Also note that * the offer and consideration components for each * order must have no remainder after multiplying * the respective amount with the supplied fraction * in order for the group of partial fills to be * considered valid. * @param criteriaResolvers An array where each element contains a reference * to a specific order as well as that order's * offer or consideration, a token identifier, and * a proof that the supplied token identifier is * contained in the order's merkle root. Note that * an empty root indicates that any (transferable) * token identifier is valid and that no associated * proof needs to be supplied. * @param fulfillments An array of elements allocating offer components * to consideration components. Note that each * consideration component must be fully met in * order for the match operation to be valid. * @param recipient The intended recipient for all unspent offer * item amounts, or the caller if the null address * is supplied. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. Note that unspent offer item amounts or native * tokens will not be reflected as part of this array. */ function matchAdvancedOrders( AdvancedOrder[] calldata orders, CriteriaResolver[] calldata criteriaResolvers, Fulfillment[] calldata fulfillments, address recipient ) external payable returns (Execution[] memory executions); /** * @notice Cancel an arbitrary number of orders. Note that only the offerer * or the zone of a given order may cancel it. Callers should ensure * that the intended order was cancelled by calling `getOrderStatus` * and confirming that `isCancelled` returns `true`. * * @param orders The orders to cancel. * * @return cancelled A boolean indicating whether the supplied orders have * been successfully cancelled. */ function cancel( OrderComponents[] calldata orders ) external returns (bool cancelled); /** * @notice Validate an arbitrary number of orders, thereby registering their * signatures as valid and allowing the fulfiller to skip signature * verification on fulfillment. Note that validated orders may still * be unfulfillable due to invalid item amounts or other factors; * callers should determine whether validated orders are fulfillable * by simulating the fulfillment call prior to execution. Also note * that anyone can validate a signed order, but only the offerer can * validate an order without supplying a signature. * * @param orders The orders to validate. * * @return validated A boolean indicating whether the supplied orders have * been successfully validated. */ function validate( Order[] calldata orders ) external returns (bool validated); /** * @notice Cancel all orders from a given offerer with a given zone in bulk * by incrementing a counter. Note that only the offerer may * increment the counter. * * @return newCounter The new counter. */ function incrementCounter() external returns (uint256 newCounter); /** * @notice Fulfill an order offering an ERC721 token by supplying Ether (or * the native token for the given chain) as consideration for the * order. An arbitrary number of "additional recipients" may also be * supplied which will each receive native tokens from the fulfiller * as consideration. Note that this function costs less gas than * `fulfillBasicOrder` due to the zero bytes in the function * selector (0x00000000) which also results in earlier function * dispatch. * * @param parameters Additional information on the fulfilled order. Note * that the offerer must first approve this contract (or * their preferred conduit if indicated by the order) for * their offered ERC721 token to be transferred. * * @return fulfilled A boolean indicating whether the order has been * successfully fulfilled. */ function fulfillBasicOrder_efficient_6GL6yc( BasicOrderParameters calldata parameters ) external payable returns (bool fulfilled); /** * @notice Retrieve the order hash for a given order. * * @param order The components of the order. * * @return orderHash The order hash. */ function getOrderHash( OrderComponents calldata order ) external view returns (bytes32 orderHash); /** * @notice Retrieve the status of a given order by hash, including whether * the order has been cancelled or validated and the fraction of the * order that has been filled. * * @param orderHash The order hash in question. * * @return isValidated A boolean indicating whether the order in question * has been validated (i.e. previously approved or * partially filled). * @return isCancelled A boolean indicating whether the order in question * has been cancelled. * @return totalFilled The total portion of the order that has been filled * (i.e. the "numerator"). * @return totalSize The total size of the order that is either filled or * unfilled (i.e. the "denominator"). */ function getOrderStatus( bytes32 orderHash ) external view returns ( bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize ); /** * @notice Retrieve the current counter for a given offerer. * * @param offerer The offerer in question. * * @return counter The current counter. */ function getCounter( address offerer ) external view returns (uint256 counter); /** * @notice Retrieve configuration information for this contract. * * @return version The contract version. * @return domainSeparator The domain separator for this contract. * @return conduitController The conduit Controller set for this contract. */ function information() external view returns ( string memory version, bytes32 domainSeparator, address conduitController ); function getContractOffererNonce( address contractOfferer ) external view returns (uint256 nonce); /** * @notice Retrieve the name of this contract. * * @return contractName The name of this contract. */ function name() external view returns (string memory contractName); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { BasicOrderType, ItemType, OrderType, Side } from "./ConsiderationEnums.sol"; import { CalldataPointer, MemoryPointer } from "../helpers/PointerLibraries.sol"; /** * @dev An order contains eleven components: an offerer, a zone (or account that * can cancel the order or restrict who can fulfill the order depending on * the type), the order type (specifying partial fill support as well as * restricted order status), the start and end time, a hash that will be * provided to the zone when validating restricted orders, a salt, a key * corresponding to a given conduit, a counter, and an arbitrary number of * offer items that can be spent along with consideration items that must * be received by their respective recipient. */ struct OrderComponents { address offerer; address zone; OfferItem[] offer; ConsiderationItem[] consideration; OrderType orderType; uint256 startTime; uint256 endTime; bytes32 zoneHash; uint256 salt; bytes32 conduitKey; uint256 counter; } /** * @dev An offer item has five components: an item type (ETH or other native * tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and * ERC1155), a token address, a dual-purpose "identifierOrCriteria" * component that will either represent a tokenId or a merkle root * depending on the item type, and a start and end amount that support * increasing or decreasing amounts over the duration of the respective * order. */ struct OfferItem { ItemType itemType; address token; uint256 identifierOrCriteria; uint256 startAmount; uint256 endAmount; } /** * @dev A consideration item has the same five components as an offer item and * an additional sixth component designating the required recipient of the * item. */ struct ConsiderationItem { ItemType itemType; address token; uint256 identifierOrCriteria; uint256 startAmount; uint256 endAmount; address payable recipient; } /** * @dev A spent item is translated from a utilized offer item and has four * components: an item type (ETH or other native tokens, ERC20, ERC721, and * ERC1155), a token address, a tokenId, and an amount. */ struct SpentItem { ItemType itemType; address token; uint256 identifier; uint256 amount; } /** * @dev A received item is translated from a utilized consideration item and has * the same four components as a spent item, as well as an additional fifth * component designating the required recipient of the item. */ struct ReceivedItem { ItemType itemType; address token; uint256 identifier; uint256 amount; address payable recipient; } /** * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155 * matching, a group of six functions may be called that only requires a * subset of the usual order arguments. Note the use of a "basicOrderType" * enum; this represents both the usual order type as well as the "route" * of the basic order (a simple derivation function for the basic order * type is `basicOrderType = orderType + (4 * basicOrderRoute)`.) */ struct BasicOrderParameters { // calldata offset address considerationToken; // 0x24 uint256 considerationIdentifier; // 0x44 uint256 considerationAmount; // 0x64 address payable offerer; // 0x84 address zone; // 0xa4 address offerToken; // 0xc4 uint256 offerIdentifier; // 0xe4 uint256 offerAmount; // 0x104 BasicOrderType basicOrderType; // 0x124 uint256 startTime; // 0x144 uint256 endTime; // 0x164 bytes32 zoneHash; // 0x184 uint256 salt; // 0x1a4 bytes32 offererConduitKey; // 0x1c4 bytes32 fulfillerConduitKey; // 0x1e4 uint256 totalOriginalAdditionalRecipients; // 0x204 AdditionalRecipient[] additionalRecipients; // 0x224 bytes signature; // 0x244 // Total length, excluding dynamic array data: 0x264 (580) } /** * @dev Basic orders can supply any number of additional recipients, with the * implied assumption that they are supplied from the offered ETH (or other * native token) or ERC20 token for the order. */ struct AdditionalRecipient { uint256 amount; address payable recipient; } /** * @dev The full set of order components, with the exception of the counter, * must be supplied when fulfilling more sophisticated orders or groups of * orders. The total number of original consideration items must also be * supplied, as the caller may specify additional consideration items. */ struct OrderParameters { address offerer; // 0x00 address zone; // 0x20 OfferItem[] offer; // 0x40 ConsiderationItem[] consideration; // 0x60 OrderType orderType; // 0x80 uint256 startTime; // 0xa0 uint256 endTime; // 0xc0 bytes32 zoneHash; // 0xe0 uint256 salt; // 0x100 bytes32 conduitKey; // 0x120 uint256 totalOriginalConsiderationItems; // 0x140 // offer.length // 0x160 } /** * @dev Orders require a signature in addition to the other order parameters. */ struct Order { OrderParameters parameters; bytes signature; } /** * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill) * and a denominator (the total size of the order) in addition to the * signature and other order parameters. It also supports an optional field * for supplying extra data; this data will be provided to the zone if the * order type is restricted and the zone is not the caller, or will be * provided to the offerer as context for contract order types. */ struct AdvancedOrder { OrderParameters parameters; uint120 numerator; uint120 denominator; bytes signature; bytes extraData; } /** * @dev Orders can be validated (either explicitly via `validate`, or as a * consequence of a full or partial fill), specifically cancelled (they can * also be cancelled in bulk via incrementing a per-zone counter), and * partially or fully filled (with the fraction filled represented by a * numerator and denominator). */ struct OrderStatus { bool isValidated; bool isCancelled; uint120 numerator; uint120 denominator; } /** * @dev A criteria resolver specifies an order, side (offer vs. consideration), * and item index. It then provides a chosen identifier (i.e. tokenId) * alongside a merkle proof demonstrating the identifier meets the required * criteria. */ struct CriteriaResolver { uint256 orderIndex; Side side; uint256 index; uint256 identifier; bytes32[] criteriaProof; } /** * @dev A fulfillment is applied to a group of orders. It decrements a series of * offer and consideration items, then generates a single execution * element. A given fulfillment can be applied to as many offer and * consideration items as desired, but must contain at least one offer and * at least one consideration that match. The fulfillment must also remain * consistent on all key parameters across all offer items (same offerer, * token, type, tokenId, and conduit preference) as well as across all * consideration items (token, type, tokenId, and recipient). */ struct Fulfillment { FulfillmentComponent[] offerComponents; FulfillmentComponent[] considerationComponents; } /** * @dev Each fulfillment component contains one index referencing a specific * order and another referencing a specific offer or consideration item. */ struct FulfillmentComponent { uint256 orderIndex; uint256 itemIndex; } /** * @dev An execution is triggered once all consideration items have been zeroed * out. It sends the item in question from the offerer to the item's * recipient, optionally sourcing approvals from either this contract * directly or from the offerer's chosen conduit if one is specified. An * execution is not provided as an argument, but rather is derived via * orders, criteria resolvers, and fulfillments (where the total number of * executions will be less than or equal to the total number of indicated * fulfillments) and returned as part of `matchOrders`. */ struct Execution { ReceivedItem item; address offerer; bytes32 conduitKey; } /** * @dev Restricted orders are validated post-execution by calling validateOrder * on the zone. This struct provides context about the order fulfillment * and any supplied extraData, as well as all order hashes fulfilled in a * call to a match or fulfillAvailable method. */ struct ZoneParameters { bytes32 orderHash; address fulfiller; address offerer; SpentItem[] offer; ReceivedItem[] consideration; bytes extraData; bytes32[] orderHashes; uint256 startTime; uint256 endTime; bytes32 zoneHash; } /** * @dev Zones and contract offerers can communicate which schemas they implement * along with any associated metadata related to each schema. */ struct Schema { uint256 id; bytes metadata; } using StructPointers for OrderComponents global; using StructPointers for OfferItem global; using StructPointers for ConsiderationItem global; using StructPointers for SpentItem global; using StructPointers for ReceivedItem global; using StructPointers for BasicOrderParameters global; using StructPointers for AdditionalRecipient global; using StructPointers for OrderParameters global; using StructPointers for Order global; using StructPointers for AdvancedOrder global; using StructPointers for OrderStatus global; using StructPointers for CriteriaResolver global; using StructPointers for Fulfillment global; using StructPointers for FulfillmentComponent global; using StructPointers for Execution global; using StructPointers for ZoneParameters global; /** * @dev This library provides a set of functions for converting structs to * pointers. */ library StructPointers { /** * @dev Get a MemoryPointer from OrderComponents. * * @param obj The OrderComponents object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderComponents memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderComponents. * * @param obj The OrderComponents object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderComponents calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OfferItem. * * @param obj The OfferItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OfferItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OfferItem. * * @param obj The OfferItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OfferItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ConsiderationItem. * * @param obj The ConsiderationItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ConsiderationItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ConsiderationItem. * * @param obj The ConsiderationItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ConsiderationItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from SpentItem. * * @param obj The SpentItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( SpentItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from SpentItem. * * @param obj The SpentItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( SpentItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ReceivedItem. * * @param obj The ReceivedItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ReceivedItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ReceivedItem. * * @param obj The ReceivedItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ReceivedItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from BasicOrderParameters. * * @param obj The BasicOrderParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( BasicOrderParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from BasicOrderParameters. * * @param obj The BasicOrderParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( BasicOrderParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from AdditionalRecipient. * * @param obj The AdditionalRecipient object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( AdditionalRecipient memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from AdditionalRecipient. * * @param obj The AdditionalRecipient object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( AdditionalRecipient calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OrderParameters. * * @param obj The OrderParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderParameters. * * @param obj The OrderParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Order. * * @param obj The Order object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Order memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Order. * * @param obj The Order object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Order calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from AdvancedOrder. * * @param obj The AdvancedOrder object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( AdvancedOrder memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from AdvancedOrder. * * @param obj The AdvancedOrder object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( AdvancedOrder calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OrderStatus. * * @param obj The OrderStatus object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderStatus memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderStatus. * * @param obj The OrderStatus object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderStatus calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from CriteriaResolver. * * @param obj The CriteriaResolver object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( CriteriaResolver memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from CriteriaResolver. * * @param obj The CriteriaResolver object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( CriteriaResolver calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Fulfillment. * * @param obj The Fulfillment object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Fulfillment memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Fulfillment. * * @param obj The Fulfillment object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Fulfillment calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from FulfillmentComponent. * * @param obj The FulfillmentComponent object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( FulfillmentComponent memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from FulfillmentComponent. * * @param obj The FulfillmentComponent object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( FulfillmentComponent calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Execution. * * @param obj The Execution object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Execution memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Execution. * * @param obj The Execution object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Execution calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ZoneParameters. * * @param obj The ZoneParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ZoneParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ZoneParameters. * * @param obj The ZoneParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ZoneParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { Side, ItemType, OrderType } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, CriteriaResolver, Execution, Fulfillment, FulfillmentComponent, OfferItem, OrderParameters, ReceivedItem } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { OrderFulfiller } from "./OrderFulfiller.sol"; import { FulfillmentApplier } from "./FulfillmentApplier.sol"; import { _revertConsiderationNotMet, _revertInvalidNativeOfferItem, _revertNoSpecifiedOrdersAvailable } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { Error_selector_offset, InsufficientNativeTokensSupplied_error_selector, InsufficientNativeTokensSupplied_error_length } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; import { AccumulatorDisarmed, ConsiderationItem_recipient_offset, Execution_offerer_offset, NonMatchSelector_InvalidErrorValue, NonMatchSelector_MagicMask, OneWord, OneWordShift, OrdersMatchedTopic0, ReceivedItem_amount_offset, ReceivedItem_recipient_offset, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { MemoryPointer, MemoryPointerLib, ZeroSlotPtr } from "seaport-types/src/helpers/PointerLibraries.sol"; /** * @title OrderCombiner * @author 0age * @notice OrderCombiner contains logic for fulfilling combinations of orders, * either by matching offer items to consideration items or by * fulfilling orders where available. */ contract OrderCombiner is OrderFulfiller, FulfillmentApplier { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) OrderFulfiller(conduitController) {} /** * @notice Internal function to attempt to fill a group of orders, fully or * partially, with an arbitrary number of items for offer and * consideration per order alongside criteria resolvers containing * specific token identifiers and associated proofs. Any order that * is not currently active, has already been fully filled, or has * been cancelled will be omitted. Remaining offer and consideration * items will then be aggregated where possible as indicated by the * supplied offer and consideration component arrays and aggregated * items will be transferred to the fulfiller or to each intended * recipient, respectively. Note that a failing item transfer or an * issue with order formatting will cause the entire batch to fail. * * @param advancedOrders The orders to fulfill along with the * fraction of those orders to attempt to * fill. Note that both the offerer and the * fulfiller must first approve this * contract (or a conduit if indicated by * the order) to transfer any relevant * tokens on their behalf and that * contracts must implement * `onERC1155Received` in order to receive * ERC1155 tokens as consideration. Also * note that all offer and consideration * components must have no remainder after * multiplication of the respective amount * with the supplied fraction for an * order's partial fill amount to be * considered valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a * proof that the supplied token identifier * is contained in the merkle root held by * the item in question's criteria element. * Note that an empty criteria indicates * that any (transferable) token * identifier on the token in question is * valid and that no associated proof needs * to be supplied. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used (and * direct approvals set on Consideration). * @param recipient The intended recipient for all received * items. * @param maximumFulfilled The maximum number of orders to fulfill. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _fulfillAvailableAdvancedOrders( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers, FulfillmentComponent[][] memory offerFulfillments, FulfillmentComponent[][] memory considerationFulfillments, bytes32 fulfillerConduitKey, address recipient, uint256 maximumFulfilled ) internal returns ( bool[] memory /* availableOrders */, Execution[] memory /* executions */ ) { // Create a `false` boolean variable to indicate that invalid orders // should NOT revert. Does not use a constant to avoid function // specialization in solc that would increase contract size. bool revertOnInvalid = _runTimeConstantFalse(); // Validate orders, apply amounts, & determine if they use conduits. ( bytes32[] memory orderHashes, bool containsNonOpen ) = _validateOrdersAndPrepareToFulfill( advancedOrders, criteriaResolvers, revertOnInvalid, maximumFulfilled, recipient ); // Aggregate used offer and consideration items and execute transfers. return _executeAvailableFulfillments( advancedOrders, offerFulfillments, considerationFulfillments, fulfillerConduitKey, recipient, orderHashes, containsNonOpen ); } /** * @dev Internal function to validate a group of orders, update their * statuses, reduce amounts by their previously filled fractions, apply * criteria resolvers, and emit OrderFulfilled events. Note that this * function needs to be called before * _aggregateValidFulfillmentConsiderationItems to set the memory * layout that _aggregateValidFulfillmentConsiderationItems depends on. * * @param advancedOrders The advanced orders to validate and reduce by * their previously filled amounts. * @param criteriaResolvers An array where each element contains a reference * to a specific order as well as that order's * offer or consideration, a token identifier, and * a proof that the supplied token identifier is * contained in the order's merkle root. Note that * a root of zero indicates that any transferable * token identifier is valid and that no proof * needs to be supplied. * @param revertOnInvalid A boolean indicating whether to revert on any * order being invalid; setting this to false will * instead cause the invalid order to be skipped. * @param maximumFulfilled The maximum number of orders to fulfill. * @param recipient The intended recipient for all items that do not * already have a designated recipient and are not * already used as part of a provided fulfillment. * * @return orderHashes The hashes of the orders being fulfilled. * @return containsNonOpen A boolean indicating whether any restricted or * contract orders are present within the provided * array of advanced orders. */ function _validateOrdersAndPrepareToFulfill( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers, bool revertOnInvalid, uint256 maximumFulfilled, address recipient ) internal returns (bytes32[] memory orderHashes, bool containsNonOpen) { // Ensure this function cannot be triggered during a reentrant call. _setReentrancyGuard(true); // Native tokens accepted during execution. // Declare "terminal memory offset" variable for use in efficient loops. uint256 terminalMemoryOffset; { // Declare an error buffer indicating status of any native offer // items. Native tokens may only be provided as part of contract // orders or when fulfilling via matchOrders or matchAdvancedOrders; // throw if bits indicating the conditions aren't met have been set. uint256 invalidNativeOfferItemErrorBuffer; // Use assembly to set the value for the second bit of error buffer. assembly { /** * Use the 231st bit of the error buffer to indicate whether the * current function is not matchAdvancedOrders or matchOrders. * * sig func * ------------------------------------------------------------- * 1010100000010111010001000 0 000100 matchOrders * 1111001011010001001010110 0 010010 matchAdvancedOrders * 1110110110011000101001010 1 110100 fulfillAvailableOrders * 1000011100100000000110110 1 000001 fulfillAvailableAdvanced * ^ 7th bit */ invalidNativeOfferItemErrorBuffer := and( NonMatchSelector_MagicMask, calldataload(0) ) } unchecked { // Read length of orders array and place on the stack. uint256 totalOrders = advancedOrders.length; // Track the order hash for each order being fulfilled. orderHashes = new bytes32[](totalOrders); // Determine the memory offset to terminate on during loops. terminalMemoryOffset = (totalOrders + 1) << OneWordShift; } // Skip overflow checks as for loops are indexed starting at zero. unchecked { // Declare variable to track if order is not a contract order. bool isNonContract; // Iterate over each order. for ( uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord ) { // Retrieve order via pointer to bypass out-of-range check & // cast function to avoid additional memory allocation. AdvancedOrder memory advancedOrder = ( _getReadAdvancedOrderByOffset()(advancedOrders, i) ); // Validate it, update status, & determine fraction to fill. ( bytes32 orderHash, uint256 numerator, uint256 denominator ) = _validateOrder(advancedOrder, revertOnInvalid); // Update the numerator on the order in question. advancedOrder.numerator = uint120(numerator); // Do not track hash or adjust prices if order is skipped. if (numerator == 0) { // Continue iterating through the remaining orders. continue; } // Update the denominator on the order in question. advancedOrder.denominator = uint120(denominator); // Otherwise, track the order hash in question. assembly { mstore(add(orderHashes, i), orderHash) } // Place the start time for the order on the stack. uint256 startTime = advancedOrder.parameters.startTime; // Place the end time for the order on the stack. uint256 endTime = advancedOrder.parameters.endTime; { // Determine order type, used to check for eligibility // for native token offer items as well as for presence // of restricted and contract orders or non-open orders. OrderType orderType = ( advancedOrder.parameters.orderType ); // Utilize assembly to efficiently check order types. // Note these checks expect that there are no order // types beyond current set (0-4) and will need to be // modified if more order types are added. assembly { // Assign the variable indicating if the order is // not a contract order. isNonContract := lt(orderType, 4) // Update the variable indicating if order is not an // open order & keep set if it has been set already. containsNonOpen := or( containsNonOpen, gt(orderType, 1) ) } } // Retrieve array of offer items for the order in question. OfferItem[] memory offer = advancedOrder.parameters.offer; // Read length of offer array and place on the stack. uint256 totalOfferItems = offer.length; // Iterate over each offer item on the order. for (uint256 j = 0; j < totalOfferItems; ++j) { // Retrieve the offer item. OfferItem memory offerItem = offer[j]; // If the offer item is for the native token and the // order type is not a contract order type, set the // first bit of the error buffer to true. assembly { invalidNativeOfferItemErrorBuffer := or( invalidNativeOfferItemErrorBuffer, lt(mload(offerItem), isNonContract) ) } // Apply order fill fraction to offer item end amount. uint256 endAmount = _getFraction( numerator, denominator, offerItem.endAmount ); // Reuse same fraction if start & end amounts are equal. if (offerItem.startAmount == offerItem.endAmount) { // Apply derived amount to both start & end amount. offerItem.startAmount = endAmount; } else { // Apply order fill fraction to item start amount. offerItem.startAmount = _getFraction( numerator, denominator, offerItem.startAmount ); } // Adjust offer amount using current time; round down. uint256 currentAmount = _locateCurrentAmount( offerItem.startAmount, endAmount, startTime, endTime, _runTimeConstantFalse() // round down ); // Update amounts in memory to match the current amount. // Note the end amount is used to track spent amounts. offerItem.startAmount = currentAmount; offerItem.endAmount = currentAmount; } // Retrieve consideration item array for order in question. ConsiderationItem[] memory consideration = ( advancedOrder.parameters.consideration ); // Read length of consideration array and place on stack. uint256 totalConsiderationItems = consideration.length; // Iterate over each consideration item on the order. for (uint256 j = 0; j < totalConsiderationItems; ++j) { // Retrieve the consideration item. ConsiderationItem memory considerationItem = ( consideration[j] ); // Apply fraction to consideration item end amount. uint256 endAmount = _getFraction( numerator, denominator, considerationItem.endAmount ); // Reuse same fraction if start & end amounts are equal. if ( considerationItem.startAmount == considerationItem.endAmount ) { // Apply derived amount to both start & end amount. considerationItem.startAmount = endAmount; } else { // Apply fraction to item start amount. considerationItem.startAmount = _getFraction( numerator, denominator, considerationItem.startAmount ); } // Adjust amount using current time; round up. uint256 currentAmount = ( _locateCurrentAmount( considerationItem.startAmount, endAmount, startTime, endTime, _runTimeConstantTrue() // round up ) ); // Set the start amount as equal to the current amount. considerationItem.startAmount = currentAmount; // Utilize assembly to manually "shift" the recipient // value, then copy the start amount to the recipient. // Note that this sets up the memory layout that is // subsequently relied upon by // _aggregateValidFulfillmentConsiderationItems as well // as during comparison to generated contract orders. assembly { // Derive pointer to the recipient using the item // pointer along with the offset to the recipient. let considerationItemRecipientPtr := add( considerationItem, ConsiderationItem_recipient_offset ) // Write recipient to endAmount, as endAmount is not // used from this point on and can be repurposed to // fit the layout of a ReceivedItem. mstore( add( considerationItem, // Note that this value used to be endAmount ReceivedItem_recipient_offset ), mload(considerationItemRecipientPtr) ) // Write startAmount to recipient, as recipient is // not used from this point on and can be repurposed // to track received amounts. mstore(considerationItemRecipientPtr, currentAmount) } } } } // If the first bit is set, a native offer item was encountered on // an order that is not a contract order. If the 231st bit is set in // the error buffer, the current function is not matchOrders or // matchAdvancedOrders. If the value is 1 + (1 << 230), then both // 1st and 231st bits were set; in that case, revert with an error. if ( invalidNativeOfferItemErrorBuffer == NonMatchSelector_InvalidErrorValue ) { _revertInvalidNativeOfferItem(); } } // Apply criteria resolvers to each order as applicable. _applyCriteriaResolvers(advancedOrders, criteriaResolvers); // Iterate over each order to check authorization status (for restricted // orders), generate orders (for contract orders), and emit events (for // all available orders) signifying that they have been fulfilled. // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Declare stack variable outside of the loop to track order hash. bytes32 orderHash; // Track whether any orders are still available for fulfillment. bool someOrderAvailable = false; // Iterate over each order. for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) { // Retrieve order hash, bypassing out-of-range check. assembly { orderHash := mload(add(orderHashes, i)) } // Do not emit an event if no order hash is present. if (orderHash == bytes32(0)) { continue; } // Retrieve order using pointer libraries to bypass out-of-range // check & cast function to avoid additional memory allocation. AdvancedOrder memory advancedOrder = ( _getReadAdvancedOrderByOffset()(advancedOrders, i) ); // Determine if max number orders have already been fulfilled. if (maximumFulfilled == 0) { // If so, set the order hash to zero. assembly { mstore(add(orderHashes, i), 0) } // Set the numerator to zero to signal to skip the order. advancedOrder.numerator = 0; // Continue iterating through the remaining orders. continue; } // Handle final checks and status updates based on order type. if (advancedOrder.parameters.orderType != OrderType.CONTRACT) { // Check authorization for restricted orders. if ( !_checkRestrictedAdvancedOrderAuthorization( advancedOrder, orderHashes, orderHash, (i >> OneWordShift) - 1, revertOnInvalid ) ) { // If authorization check fails, set order hash to zero. assembly { mstore(add(orderHashes, i), 0) } // Set numerator to zero to signal to skip the order. advancedOrder.numerator = 0; // Continue iterating through the remaining orders. continue; } // Update status as long as some fraction is available. if ( !_updateStatus( orderHash, advancedOrder.numerator, advancedOrder.denominator, _revertOnFailedUpdate( advancedOrder.parameters, revertOnInvalid ) ) ) { // If status update fails, set the order hash to zero. assembly { mstore(add(orderHashes, i), 0) } // Set numerator to zero to signal to skip the order. advancedOrder.numerator = 0; // Continue iterating through the remaining orders. continue; } } else { // Return the generated order based on the order params and // the provided extra data. If revertOnInvalid is true, the // function will revert if the input is invalid. orderHash = _getGeneratedOrder( advancedOrder.parameters, advancedOrder.extraData, revertOnInvalid ); // Write the derived order hash to the order hashes array. assembly { mstore(add(orderHashes, i), orderHash) } // Handle invalid orders, indicated by a zero order hash. if (orderHash == bytes32(0)) { // Set numerator to zero to signal to skip the order. advancedOrder.numerator = 0; // Continue iterating through the remaining orders. continue; } } // Decrement the number of fulfilled orders. // Skip underflow check as the condition before // implies that maximumFulfilled > 0. --maximumFulfilled; // Retrieve parameters for the order in question. OrderParameters memory orderParameters = ( advancedOrder.parameters ); // Emit an OrderFulfilled event. _emitOrderFulfilledEvent( orderHash, orderParameters.offerer, orderParameters.zone, recipient, orderParameters.offer, orderParameters.consideration ); // Set the flag indicating that some order is available. someOrderAvailable = true; } // Revert if no orders are available. if (!someOrderAvailable) { _revertNoSpecifiedOrdersAvailable(); } } } /** * @dev Internal function to fulfill a group of validated orders, fully or * partially, with an arbitrary number of items for offer and * consideration per order and to execute transfers. Any order that is * not currently active, has already been fully filled, or has been * cancelled will be omitted. Remaining offer and consideration items * will then be aggregated where possible as indicated by the supplied * offer and consideration component arrays and aggregated items will * be transferred to the fulfiller or to each intended recipient, * respectively. Note that a failing item transfer or an issue with * order formatting will cause the entire batch to fail. * * @param advancedOrders The orders to fulfill along with the * fraction of those orders to attempt to * fill. Note that both the offerer and the * fulfiller must first approve this * contract (or the conduit if indicated by * the order) to transfer any relevant * tokens on their behalf and that * contracts must implement * `onERC1155Received` in order to receive * ERC1155 tokens as consideration. Also * note that all offer and consideration * components must have no remainder after * multiplication of the respective amount * with the supplied fraction for an * order's partial fill amount to be * considered valid. * @param offerFulfillments An array of FulfillmentComponent arrays * indicating which offer items to attempt * to aggregate when preparing executions. * @param considerationFulfillments An array of FulfillmentComponent arrays * indicating which consideration items to * attempt to aggregate when preparing * executions. * @param fulfillerConduitKey A bytes32 value indicating what conduit, * if any, to source the fulfiller's token * approvals from. The zero hash signifies * that no conduit should be used, with * direct approvals set on Consideration. * @param recipient The intended recipient for all items * that do not already have a designated * recipient and are not already used as * part of a provided fulfillment. * @param orderHashes An array of order hashes for each order. * @param containsNonOpen A boolean indicating whether any * restricted or contract orders are * present within the provided array of * advanced orders. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _executeAvailableFulfillments( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[][] memory offerFulfillments, FulfillmentComponent[][] memory considerationFulfillments, bytes32 fulfillerConduitKey, address recipient, bytes32[] memory orderHashes, bool containsNonOpen ) internal returns (bool[] memory availableOrders, Execution[] memory executions) { // Retrieve length of offer fulfillments array and place on the stack. uint256 totalOfferFulfillments = offerFulfillments.length; // Retrieve length of consideration fulfillments array & place on stack. uint256 totalConsiderationFulfillments = ( considerationFulfillments.length ); // Allocate an execution for each offer and consideration fulfillment. executions = new Execution[]( totalOfferFulfillments + totalConsiderationFulfillments ); // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Iterate over each offer fulfillment. for (uint256 i = 0; i < totalOfferFulfillments; ++i) { // Derive aggregated execution corresponding with fulfillment // and assign it to the executions array. executions[i] = _aggregateAvailable( advancedOrders, Side.OFFER, offerFulfillments[i], fulfillerConduitKey, recipient ); } // Iterate over each consideration fulfillment. for (uint256 i = 0; i < totalConsiderationFulfillments; ++i) { // Derive aggregated execution corresponding with fulfillment // and assign it to the executions array. executions[i + totalOfferFulfillments] = _aggregateAvailable( advancedOrders, Side.CONSIDERATION, considerationFulfillments[i], fulfillerConduitKey, address(0) // unused ); } } // Perform final checks and return. availableOrders = _performFinalChecksAndExecuteOrders( advancedOrders, executions, orderHashes, recipient, containsNonOpen ); return (availableOrders, executions); } /** * @dev Internal function to perform a final check that each consideration * item for an arbitrary number of fulfilled orders has been met and to * trigger associated executions, transferring the respective items. * * @param advancedOrders The orders to check and perform executions for. * @param executions An array of elements indicating the sequence of * transfers to perform when fulfilling the given * orders. * @param orderHashes An array of order hashes for each order. * @param recipient The intended recipient for all items that do not * already have a designated recipient and are not * used as part of a provided fulfillment. * @param containsNonOpen A boolean indicating whether any restricted or * contract orders are present within the provided * array of advanced orders. * * @return availableOrders An array of booleans indicating if each order * with an index corresponding to the index of the * returned boolean was fulfillable or not. */ function _performFinalChecksAndExecuteOrders( AdvancedOrder[] memory advancedOrders, Execution[] memory executions, bytes32[] memory orderHashes, address recipient, bool containsNonOpen ) internal returns (bool[] memory /* availableOrders */) { // Retrieve the length of the advanced orders array and place on stack. uint256 totalOrders = advancedOrders.length; // Initialize array for tracking available orders. bool[] memory availableOrders = new bool[](totalOrders); // Initialize an accumulator array. From this point forward, no new // memory regions can be safely allocated until the accumulator is no // longer being utilized, as the accumulator operates in an open-ended // fashion from this memory pointer; existing memory may still be // accessed and modified, however. bytes memory accumulator = new bytes(AccumulatorDisarmed); // Skip overflow check: loop index & executions length are both bounded. unchecked { // Determine the memory offset to terminate on during loops. uint256 terminalMemoryOffset = ((executions.length + 1) << OneWordShift); // Iterate over each execution. for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) { // Get execution using pointer libraries to bypass out-of-range // check & cast function to avoid additional memory allocation. Execution memory execution = ( _getReadExecutionByOffset()(executions, i) ); // Retrieve the associated received item and amount. ReceivedItem memory item = execution.item; uint256 amount = item.amount; // Transfer the item specified by the execution as long as the // execution is not a zero-amount execution (which can occur if // the corresponding fulfillment contained only items on orders // that are unavailable or are out of range of the respective // item array). if (amount != 0) { // Utilize assembly to check for native token balance. assembly { // Ensure a sufficient native balance if relevant. if and( iszero(mload(item)), // itemType == ItemType.NATIVE // item.amount > address(this).balance gt(amount, selfbalance()) ) { // Store left-padded selector with push4, // mem[28:32] = selector mstore( 0, InsufficientNativeTokensSupplied_error_selector ) // revert(abi.encodeWithSignature( // "InsufficientNativeTokensSupplied()" // )) revert( Error_selector_offset, InsufficientNativeTokensSupplied_error_length ) } } // Transfer the item specified by the execution. _transfer( item, execution.offerer, execution.conduitKey, accumulator ); } } } // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Iterate over each order. for (uint256 i = 0; i < totalOrders; ++i) { // Retrieve the order in question. AdvancedOrder memory advancedOrder = advancedOrders[i]; // Skip the order in question if not being not fulfilled. if (advancedOrder.numerator == 0) { // Explicitly set availableOrders at the given index to // guard against the possibility of dirtied memory. availableOrders[i] = false; continue; } // Mark the order as available. availableOrders[i] = true; // Retrieve the order parameters. OrderParameters memory parameters = advancedOrder.parameters; { // Retrieve offer items. OfferItem[] memory offer = parameters.offer; // Read length of offer array & place on the stack. uint256 totalOfferItems = offer.length; // Iterate over each offer item to restore it. for (uint256 j = 0; j < totalOfferItems; ++j) { // Retrieve the offer item in question. OfferItem memory offerItem = offer[j]; // Transfer to recipient if unspent amount is not zero. // Note that the transfer will not be reflected in the // executions array. if (offerItem.startAmount != 0) { // Replace endAmount parameter with the recipient to // make offerItem compatible with the ReceivedItem // input to _transfer & cache the original endAmount // so it can be restored after the transfer. uint256 originalEndAmount = ( _replaceEndAmountWithRecipient( offerItem, recipient ) ); // Transfer excess offer item amount to recipient. _toOfferItemInput(_transfer)( offerItem, parameters.offerer, parameters.conduitKey, accumulator ); // Restore the original endAmount in offerItem. assembly { mstore( add( offerItem, ReceivedItem_recipient_offset ), originalEndAmount ) } } // Restore original amount on the offer item. offerItem.startAmount = offerItem.endAmount; } } { // Read consideration items & ensure they are fulfilled. ConsiderationItem[] memory consideration = ( parameters.consideration ); // Read length of consideration array & place on stack. uint256 totalConsiderationItems = consideration.length; // Iterate over each consideration item. for (uint256 j = 0; j < totalConsiderationItems; ++j) { ConsiderationItem memory considerationItem = ( consideration[j] ); // Retrieve remaining amount on consideration item. uint256 unmetAmount = considerationItem.startAmount; // Revert if the remaining amount is not zero. if (unmetAmount != 0) { _revertConsiderationNotMet(i, j, unmetAmount); } // Utilize assembly to restore the original value. assembly { // Write recipient to startAmount. mstore( add( considerationItem, ReceivedItem_amount_offset ), mload( add( considerationItem, ConsiderationItem_recipient_offset ) ) ) } } } } } // Trigger any accumulated transfers via call to the conduit. _triggerIfArmed(accumulator); // Determine whether any native token balance remains. uint256 remainingNativeTokenBalance; assembly { remainingNativeTokenBalance := selfbalance() } // Return any remaining native token balance to the caller. if (remainingNativeTokenBalance != 0) { _transferNativeTokens( payable(msg.sender), remainingNativeTokenBalance ); } // If any restricted or contract orders are present in the group of // orders being fulfilled, perform any validateOrder or ratifyOrder // calls after all executions and related transfers are complete. if (containsNonOpen) { // Iterate over each order a second time. for (uint256 i = 0; i < totalOrders; ) { // Ensure the order in question is being fulfilled. if (availableOrders[i]) { // Check restricted orders and contract orders. _assertRestrictedAdvancedOrderValidity( advancedOrders[i], orderHashes, orderHashes[i] ); } // Skip overflow checks as for loop is indexed starting at zero. unchecked { ++i; } } } // Clear the reentrancy guard. _clearReentrancyGuard(); // Return the array containing available orders. return availableOrders; } /** * @dev Internal function to emit an OrdersMatched event using the same * memory region as the existing order hash array. * * @param orderHashes An array of order hashes to include as an argument for * the OrdersMatched event. */ function _emitOrdersMatched(bytes32[] memory orderHashes) internal { assembly { // Load the array length from memory. let length := mload(orderHashes) // Get the full size of the event data - one word for the offset, // one for the array length and one per hash. let dataSize := add(TwoWords, shl(OneWordShift, length)) // Get pointer to start of data, reusing word before array length // for the offset. let dataPointer := sub(orderHashes, OneWord) // Cache the existing word in memory at the offset pointer. let cache := mload(dataPointer) // Write an offset of 32. mstore(dataPointer, OneWord) // Emit the OrdersMatched event. log1(dataPointer, dataSize, OrdersMatchedTopic0) // Restore the cached word. mstore(dataPointer, cache) } } /** * @dev Internal function to match an arbitrary number of full or partial * orders, each with an arbitrary number of items for offer and * consideration, supplying criteria resolvers containing specific * token identifiers and associated proofs as well as fulfillments * allocating offer components to consideration components. * * @param advancedOrders The advanced orders to match. Note that both the * offerer and fulfiller on each order must first * approve this contract (or their conduit if * indicated by the order) to transfer any relevant * tokens on their behalf and each consideration * recipient must implement `onERC1155Received` in * order to receive ERC1155 tokens. Also note that * the offer and consideration components for each * order must have no remainder after multiplying * the respective amount with the supplied fraction * in order for the group of partial fills to be * considered valid. * @param criteriaResolvers An array where each element contains a reference * to a specific order as well as that order's * offer or consideration, a token identifier, and * a proof that the supplied token identifier is * contained in the order's merkle root. Note that * an empty root indicates that any (transferable) * token identifier is valid and that no associated * proof needs to be supplied. * @param fulfillments An array of elements allocating offer components * to consideration components. Note that each * consideration component must be fully met in * order for the match operation to be valid. * @param recipient The intended recipient for all unspent offer * item amounts. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _matchAdvancedOrders( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers, Fulfillment[] memory fulfillments, address recipient ) internal returns (Execution[] memory /* executions */) { // Create a `true` boolean variable to indicate that invalid orders // should revert. Does not use a constant to avoid function // specialization in solc that would increase contract size. bool revertOnInvalid = _runTimeConstantTrue(); // Validate orders, update order status, and determine item amounts. ( bytes32[] memory orderHashes, bool containsNonOpen ) = _validateOrdersAndPrepareToFulfill( advancedOrders, criteriaResolvers, revertOnInvalid, advancedOrders.length, recipient ); // Emit OrdersMatched event, providing an array of matched order hashes. _emitOrdersMatched(orderHashes); // Fulfill the orders using the supplied fulfillments and recipient. return _fulfillAdvancedOrders( advancedOrders, fulfillments, orderHashes, recipient, containsNonOpen ); } /** * @dev Internal function to fulfill an arbitrary number of orders, either * full or partial, after validating, adjusting amounts, and applying * criteria resolvers. * * @param advancedOrders The orders to match, including a fraction to * attempt to fill for each order. * @param fulfillments An array of elements allocating offer components * to consideration components. Note that the final * amount of each consideration component must be * zero for a match operation to be considered valid. * @param orderHashes An array of order hashes for each order. * @param recipient The intended recipient for all items that do not * already have a designated recipient and are not * used as part of a provided fulfillment. * @param containsNonOpen A boolean indicating whether any restricted or * contract orders are present within the provided * array of advanced orders. * * @return executions An array of elements indicating the sequence of * transfers performed as part of matching the given * orders. */ function _fulfillAdvancedOrders( AdvancedOrder[] memory advancedOrders, Fulfillment[] memory fulfillments, bytes32[] memory orderHashes, address recipient, bool containsNonOpen ) internal returns (Execution[] memory executions) { // Retrieve fulfillments array length and place on the stack. uint256 totalFulfillments = fulfillments.length; // Allocate executions by fulfillment and apply them to each execution. executions = new Execution[](totalFulfillments); // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Iterate over each fulfillment. for (uint256 i = 0; i < totalFulfillments; ++i) { /// Retrieve the fulfillment in question. Fulfillment memory fulfillment = fulfillments[i]; // Derive the execution corresponding with the fulfillment and // assign it to the executions array. executions[i] = _applyFulfillment( advancedOrders, fulfillment.offerComponents, fulfillment.considerationComponents, i ); } } // Perform final checks and execute orders. _performFinalChecksAndExecuteOrders( advancedOrders, executions, orderHashes, recipient, containsNonOpen ); // Return the executions array. return executions; } /** * @dev Internal view function to determine whether a status update failure * should cause a revert or allow a skipped order. The call must revert * if an `authorizeOrder` call has been successfully performed and the * status update cannot be performed, regardless of whether the order * could be otherwise marked as skipped. Note that a revert is not * required on a failed update if the call originates from the zone, as * no `authorizeOrder` call is performed in that case. * * @param orderParameters The order parameters in question. * @param revertOnInvalid A boolean indicating whether the call should * revert for non-restricted order types. * * @return revertOnFailedUpdate A boolean indicating whether the order * should revert on a failed status update. */ function _revertOnFailedUpdate( OrderParameters memory orderParameters, bool revertOnInvalid ) internal view returns (bool revertOnFailedUpdate) { OrderType orderType = orderParameters.orderType; address zone = orderParameters.zone; assembly { revertOnFailedUpdate := or( revertOnInvalid, and(gt(orderType, 1), iszero(eq(caller(), zone))) ) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; type CalldataPointer is uint256; type ReturndataPointer is uint256; type MemoryPointer is uint256; using CalldataPointerLib for CalldataPointer global; using MemoryPointerLib for MemoryPointer global; using ReturndataPointerLib for ReturndataPointer global; using CalldataReaders for CalldataPointer global; using ReturndataReaders for ReturndataPointer global; using MemoryReaders for MemoryPointer global; using MemoryWriters for MemoryPointer global; CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04); MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40); MemoryPointer constant ZeroSlotPtr = MemoryPointer.wrap(0x60); uint256 constant IdentityPrecompileAddress = 0x4; uint256 constant OffsetOrLengthMask = 0xffffffff; uint256 constant _OneWord = 0x20; uint256 constant _FreeMemoryPointerSlot = 0x40; /// @dev Allocates `size` bytes in memory by increasing the free memory pointer /// and returns the memory pointer to the first byte of the allocated region. // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function malloc(uint256 size) pure returns (MemoryPointer mPtr) { assembly { mPtr := mload(_FreeMemoryPointerSlot) mstore(_FreeMemoryPointerSlot, add(mPtr, size)) } } // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) { mPtr = FreeMemoryPPtr.readMemoryPointer(); } // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function setFreeMemoryPointer(MemoryPointer mPtr) pure { FreeMemoryPPtr.write(mPtr); } library CalldataPointerLib { function lt( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(CalldataPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata. /// pointer `cdPtr` must point to some parent object with a dynamic /// type's head stored at `cdPtr + headOffset`. function pptrOffset( CalldataPointer cdPtr, uint256 headOffset ) internal pure returns (CalldataPointer cdPtrChild) { cdPtrChild = cdPtr.offset( cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask ); } /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer. /// `cdPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( CalldataPointer cdPtr ) internal pure returns (CalldataPointer cdPtrChild) { cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask); } /// @dev Returns the calldata pointer one word after `cdPtr`. function next( CalldataPointer cdPtr ) internal pure returns (CalldataPointer cdPtrNext) { assembly { cdPtrNext := add(cdPtr, _OneWord) } } /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`. function offset( CalldataPointer cdPtr, uint256 _offset ) internal pure returns (CalldataPointer cdPtrNext) { assembly { cdPtrNext := add(cdPtr, _offset) } } /// @dev Copies `size` bytes from calldata starting at `src` to memory at /// `dst`. function copy( CalldataPointer src, MemoryPointer dst, uint256 size ) internal pure { assembly { calldatacopy(dst, src, size) } } } library ReturndataPointerLib { function lt( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(ReturndataPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata /// pointer. `rdPtr` must point to some parent object with a dynamic /// type's head stored at `rdPtr + headOffset`. function pptrOffset( ReturndataPointer rdPtr, uint256 headOffset ) internal pure returns (ReturndataPointer rdPtrChild) { rdPtrChild = rdPtr.offset( rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask ); } /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer. /// `rdPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( ReturndataPointer rdPtr ) internal pure returns (ReturndataPointer rdPtrChild) { rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask); } /// @dev Returns the returndata pointer one word after `cdPtr`. function next( ReturndataPointer rdPtr ) internal pure returns (ReturndataPointer rdPtrNext) { assembly { rdPtrNext := add(rdPtr, _OneWord) } } /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`. function offset( ReturndataPointer rdPtr, uint256 _offset ) internal pure returns (ReturndataPointer rdPtrNext) { assembly { rdPtrNext := add(rdPtr, _offset) } } /// @dev Copies `size` bytes from returndata starting at `src` to memory at /// `dst`. function copy( ReturndataPointer src, MemoryPointer dst, uint256 size ) internal pure { assembly { returndatacopy(dst, src, size) } } } library MemoryPointerLib { function copy( MemoryPointer src, MemoryPointer dst, uint256 size ) internal view { assembly { let success := staticcall( gas(), IdentityPrecompileAddress, src, size, dst, size ) if or(iszero(returndatasize()), iszero(success)) { revert(0, 0) } } } function lt( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(MemoryPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } function hash( MemoryPointer ptr, uint256 length ) internal pure returns (bytes32 _hash) { assembly { _hash := keccak256(ptr, length) } } /// @dev Returns the memory pointer one word after `mPtr`. function next( MemoryPointer mPtr ) internal pure returns (MemoryPointer mPtrNext) { assembly { mPtrNext := add(mPtr, _OneWord) } } /// @dev Returns the memory pointer `_offset` bytes after `mPtr`. function offset( MemoryPointer mPtr, uint256 _offset ) internal pure returns (MemoryPointer mPtrNext) { assembly { mPtrNext := add(mPtr, _offset) } } /// @dev Resolves a pointer at `mPtr + headOffset` to a memory /// pointer. `mPtr` must point to some parent object with a dynamic /// type's pointer stored at `mPtr + headOffset`. function pptrOffset( MemoryPointer mPtr, uint256 headOffset ) internal pure returns (MemoryPointer mPtrChild) { mPtrChild = mPtr.offset(headOffset).readMemoryPointer(); } /// @dev Resolves a pointer stored at `mPtr` to a memory pointer. /// `mPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( MemoryPointer mPtr ) internal pure returns (MemoryPointer mPtrChild) { mPtrChild = mPtr.readMemoryPointer(); } } library CalldataReaders { /// @dev Reads the value at `cdPtr` and applies a mask to return only the /// last 4 bytes. function readMaskedUint256( CalldataPointer cdPtr ) internal pure returns (uint256 value) { value = cdPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `cdPtr` in calldata. function readBool( CalldataPointer cdPtr ) internal pure returns (bool value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the address at `cdPtr` in calldata. function readAddress( CalldataPointer cdPtr ) internal pure returns (address value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes1 at `cdPtr` in calldata. function readBytes1( CalldataPointer cdPtr ) internal pure returns (bytes1 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes2 at `cdPtr` in calldata. function readBytes2( CalldataPointer cdPtr ) internal pure returns (bytes2 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes3 at `cdPtr` in calldata. function readBytes3( CalldataPointer cdPtr ) internal pure returns (bytes3 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes4 at `cdPtr` in calldata. function readBytes4( CalldataPointer cdPtr ) internal pure returns (bytes4 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes5 at `cdPtr` in calldata. function readBytes5( CalldataPointer cdPtr ) internal pure returns (bytes5 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes6 at `cdPtr` in calldata. function readBytes6( CalldataPointer cdPtr ) internal pure returns (bytes6 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes7 at `cdPtr` in calldata. function readBytes7( CalldataPointer cdPtr ) internal pure returns (bytes7 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes8 at `cdPtr` in calldata. function readBytes8( CalldataPointer cdPtr ) internal pure returns (bytes8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes9 at `cdPtr` in calldata. function readBytes9( CalldataPointer cdPtr ) internal pure returns (bytes9 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes10 at `cdPtr` in calldata. function readBytes10( CalldataPointer cdPtr ) internal pure returns (bytes10 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes11 at `cdPtr` in calldata. function readBytes11( CalldataPointer cdPtr ) internal pure returns (bytes11 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes12 at `cdPtr` in calldata. function readBytes12( CalldataPointer cdPtr ) internal pure returns (bytes12 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes13 at `cdPtr` in calldata. function readBytes13( CalldataPointer cdPtr ) internal pure returns (bytes13 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes14 at `cdPtr` in calldata. function readBytes14( CalldataPointer cdPtr ) internal pure returns (bytes14 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes15 at `cdPtr` in calldata. function readBytes15( CalldataPointer cdPtr ) internal pure returns (bytes15 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes16 at `cdPtr` in calldata. function readBytes16( CalldataPointer cdPtr ) internal pure returns (bytes16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes17 at `cdPtr` in calldata. function readBytes17( CalldataPointer cdPtr ) internal pure returns (bytes17 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes18 at `cdPtr` in calldata. function readBytes18( CalldataPointer cdPtr ) internal pure returns (bytes18 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes19 at `cdPtr` in calldata. function readBytes19( CalldataPointer cdPtr ) internal pure returns (bytes19 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes20 at `cdPtr` in calldata. function readBytes20( CalldataPointer cdPtr ) internal pure returns (bytes20 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes21 at `cdPtr` in calldata. function readBytes21( CalldataPointer cdPtr ) internal pure returns (bytes21 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes22 at `cdPtr` in calldata. function readBytes22( CalldataPointer cdPtr ) internal pure returns (bytes22 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes23 at `cdPtr` in calldata. function readBytes23( CalldataPointer cdPtr ) internal pure returns (bytes23 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes24 at `cdPtr` in calldata. function readBytes24( CalldataPointer cdPtr ) internal pure returns (bytes24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes25 at `cdPtr` in calldata. function readBytes25( CalldataPointer cdPtr ) internal pure returns (bytes25 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes26 at `cdPtr` in calldata. function readBytes26( CalldataPointer cdPtr ) internal pure returns (bytes26 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes27 at `cdPtr` in calldata. function readBytes27( CalldataPointer cdPtr ) internal pure returns (bytes27 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes28 at `cdPtr` in calldata. function readBytes28( CalldataPointer cdPtr ) internal pure returns (bytes28 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes29 at `cdPtr` in calldata. function readBytes29( CalldataPointer cdPtr ) internal pure returns (bytes29 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes30 at `cdPtr` in calldata. function readBytes30( CalldataPointer cdPtr ) internal pure returns (bytes30 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes31 at `cdPtr` in calldata. function readBytes31( CalldataPointer cdPtr ) internal pure returns (bytes31 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes32 at `cdPtr` in calldata. function readBytes32( CalldataPointer cdPtr ) internal pure returns (bytes32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint8 at `cdPtr` in calldata. function readUint8( CalldataPointer cdPtr ) internal pure returns (uint8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint16 at `cdPtr` in calldata. function readUint16( CalldataPointer cdPtr ) internal pure returns (uint16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint24 at `cdPtr` in calldata. function readUint24( CalldataPointer cdPtr ) internal pure returns (uint24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint32 at `cdPtr` in calldata. function readUint32( CalldataPointer cdPtr ) internal pure returns (uint32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint40 at `cdPtr` in calldata. function readUint40( CalldataPointer cdPtr ) internal pure returns (uint40 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint48 at `cdPtr` in calldata. function readUint48( CalldataPointer cdPtr ) internal pure returns (uint48 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint56 at `cdPtr` in calldata. function readUint56( CalldataPointer cdPtr ) internal pure returns (uint56 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint64 at `cdPtr` in calldata. function readUint64( CalldataPointer cdPtr ) internal pure returns (uint64 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint72 at `cdPtr` in calldata. function readUint72( CalldataPointer cdPtr ) internal pure returns (uint72 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint80 at `cdPtr` in calldata. function readUint80( CalldataPointer cdPtr ) internal pure returns (uint80 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint88 at `cdPtr` in calldata. function readUint88( CalldataPointer cdPtr ) internal pure returns (uint88 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint96 at `cdPtr` in calldata. function readUint96( CalldataPointer cdPtr ) internal pure returns (uint96 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint104 at `cdPtr` in calldata. function readUint104( CalldataPointer cdPtr ) internal pure returns (uint104 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint112 at `cdPtr` in calldata. function readUint112( CalldataPointer cdPtr ) internal pure returns (uint112 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint120 at `cdPtr` in calldata. function readUint120( CalldataPointer cdPtr ) internal pure returns (uint120 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint128 at `cdPtr` in calldata. function readUint128( CalldataPointer cdPtr ) internal pure returns (uint128 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint136 at `cdPtr` in calldata. function readUint136( CalldataPointer cdPtr ) internal pure returns (uint136 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint144 at `cdPtr` in calldata. function readUint144( CalldataPointer cdPtr ) internal pure returns (uint144 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint152 at `cdPtr` in calldata. function readUint152( CalldataPointer cdPtr ) internal pure returns (uint152 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint160 at `cdPtr` in calldata. function readUint160( CalldataPointer cdPtr ) internal pure returns (uint160 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint168 at `cdPtr` in calldata. function readUint168( CalldataPointer cdPtr ) internal pure returns (uint168 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint176 at `cdPtr` in calldata. function readUint176( CalldataPointer cdPtr ) internal pure returns (uint176 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint184 at `cdPtr` in calldata. function readUint184( CalldataPointer cdPtr ) internal pure returns (uint184 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint192 at `cdPtr` in calldata. function readUint192( CalldataPointer cdPtr ) internal pure returns (uint192 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint200 at `cdPtr` in calldata. function readUint200( CalldataPointer cdPtr ) internal pure returns (uint200 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint208 at `cdPtr` in calldata. function readUint208( CalldataPointer cdPtr ) internal pure returns (uint208 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint216 at `cdPtr` in calldata. function readUint216( CalldataPointer cdPtr ) internal pure returns (uint216 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint224 at `cdPtr` in calldata. function readUint224( CalldataPointer cdPtr ) internal pure returns (uint224 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint232 at `cdPtr` in calldata. function readUint232( CalldataPointer cdPtr ) internal pure returns (uint232 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint240 at `cdPtr` in calldata. function readUint240( CalldataPointer cdPtr ) internal pure returns (uint240 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint248 at `cdPtr` in calldata. function readUint248( CalldataPointer cdPtr ) internal pure returns (uint248 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint256 at `cdPtr` in calldata. function readUint256( CalldataPointer cdPtr ) internal pure returns (uint256 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int8 at `cdPtr` in calldata. function readInt8( CalldataPointer cdPtr ) internal pure returns (int8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int16 at `cdPtr` in calldata. function readInt16( CalldataPointer cdPtr ) internal pure returns (int16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int24 at `cdPtr` in calldata. function readInt24( CalldataPointer cdPtr ) internal pure returns (int24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int32 at `cdPtr` in calldata. function readInt32( CalldataPointer cdPtr ) internal pure returns (int32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int40 at `cdPtr` in calldata. function readInt40( CalldataPointer cdPtr ) internal pure returns (int40 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int48 at `cdPtr` in calldata. function readInt48( CalldataPointer cdPtr ) internal pure returns (int48 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int56 at `cdPtr` in calldata. function readInt56( CalldataPointer cdPtr ) internal pure returns (int56 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int64 at `cdPtr` in calldata. function readInt64( CalldataPointer cdPtr ) internal pure returns (int64 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int72 at `cdPtr` in calldata. function readInt72( CalldataPointer cdPtr ) internal pure returns (int72 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int80 at `cdPtr` in calldata. function readInt80( CalldataPointer cdPtr ) internal pure returns (int80 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int88 at `cdPtr` in calldata. function readInt88( CalldataPointer cdPtr ) internal pure returns (int88 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int96 at `cdPtr` in calldata. function readInt96( CalldataPointer cdPtr ) internal pure returns (int96 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int104 at `cdPtr` in calldata. function readInt104( CalldataPointer cdPtr ) internal pure returns (int104 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int112 at `cdPtr` in calldata. function readInt112( CalldataPointer cdPtr ) internal pure returns (int112 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int120 at `cdPtr` in calldata. function readInt120( CalldataPointer cdPtr ) internal pure returns (int120 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int128 at `cdPtr` in calldata. function readInt128( CalldataPointer cdPtr ) internal pure returns (int128 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int136 at `cdPtr` in calldata. function readInt136( CalldataPointer cdPtr ) internal pure returns (int136 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int144 at `cdPtr` in calldata. function readInt144( CalldataPointer cdPtr ) internal pure returns (int144 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int152 at `cdPtr` in calldata. function readInt152( CalldataPointer cdPtr ) internal pure returns (int152 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int160 at `cdPtr` in calldata. function readInt160( CalldataPointer cdPtr ) internal pure returns (int160 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int168 at `cdPtr` in calldata. function readInt168( CalldataPointer cdPtr ) internal pure returns (int168 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int176 at `cdPtr` in calldata. function readInt176( CalldataPointer cdPtr ) internal pure returns (int176 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int184 at `cdPtr` in calldata. function readInt184( CalldataPointer cdPtr ) internal pure returns (int184 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int192 at `cdPtr` in calldata. function readInt192( CalldataPointer cdPtr ) internal pure returns (int192 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int200 at `cdPtr` in calldata. function readInt200( CalldataPointer cdPtr ) internal pure returns (int200 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int208 at `cdPtr` in calldata. function readInt208( CalldataPointer cdPtr ) internal pure returns (int208 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int216 at `cdPtr` in calldata. function readInt216( CalldataPointer cdPtr ) internal pure returns (int216 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int224 at `cdPtr` in calldata. function readInt224( CalldataPointer cdPtr ) internal pure returns (int224 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int232 at `cdPtr` in calldata. function readInt232( CalldataPointer cdPtr ) internal pure returns (int232 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int240 at `cdPtr` in calldata. function readInt240( CalldataPointer cdPtr ) internal pure returns (int240 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int248 at `cdPtr` in calldata. function readInt248( CalldataPointer cdPtr ) internal pure returns (int248 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int256 at `cdPtr` in calldata. function readInt256( CalldataPointer cdPtr ) internal pure returns (int256 value) { assembly { value := calldataload(cdPtr) } } } library ReturndataReaders { /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes function readMaskedUint256( ReturndataPointer rdPtr ) internal pure returns (uint256 value) { value = rdPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `rdPtr` in returndata. function readBool( ReturndataPointer rdPtr ) internal pure returns (bool value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the address at `rdPtr` in returndata. function readAddress( ReturndataPointer rdPtr ) internal pure returns (address value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes1 at `rdPtr` in returndata. function readBytes1( ReturndataPointer rdPtr ) internal pure returns (bytes1 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes2 at `rdPtr` in returndata. function readBytes2( ReturndataPointer rdPtr ) internal pure returns (bytes2 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes3 at `rdPtr` in returndata. function readBytes3( ReturndataPointer rdPtr ) internal pure returns (bytes3 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes4 at `rdPtr` in returndata. function readBytes4( ReturndataPointer rdPtr ) internal pure returns (bytes4 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes5 at `rdPtr` in returndata. function readBytes5( ReturndataPointer rdPtr ) internal pure returns (bytes5 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes6 at `rdPtr` in returndata. function readBytes6( ReturndataPointer rdPtr ) internal pure returns (bytes6 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes7 at `rdPtr` in returndata. function readBytes7( ReturndataPointer rdPtr ) internal pure returns (bytes7 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes8 at `rdPtr` in returndata. function readBytes8( ReturndataPointer rdPtr ) internal pure returns (bytes8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes9 at `rdPtr` in returndata. function readBytes9( ReturndataPointer rdPtr ) internal pure returns (bytes9 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes10 at `rdPtr` in returndata. function readBytes10( ReturndataPointer rdPtr ) internal pure returns (bytes10 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes11 at `rdPtr` in returndata. function readBytes11( ReturndataPointer rdPtr ) internal pure returns (bytes11 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes12 at `rdPtr` in returndata. function readBytes12( ReturndataPointer rdPtr ) internal pure returns (bytes12 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes13 at `rdPtr` in returndata. function readBytes13( ReturndataPointer rdPtr ) internal pure returns (bytes13 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes14 at `rdPtr` in returndata. function readBytes14( ReturndataPointer rdPtr ) internal pure returns (bytes14 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes15 at `rdPtr` in returndata. function readBytes15( ReturndataPointer rdPtr ) internal pure returns (bytes15 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes16 at `rdPtr` in returndata. function readBytes16( ReturndataPointer rdPtr ) internal pure returns (bytes16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes17 at `rdPtr` in returndata. function readBytes17( ReturndataPointer rdPtr ) internal pure returns (bytes17 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes18 at `rdPtr` in returndata. function readBytes18( ReturndataPointer rdPtr ) internal pure returns (bytes18 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes19 at `rdPtr` in returndata. function readBytes19( ReturndataPointer rdPtr ) internal pure returns (bytes19 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes20 at `rdPtr` in returndata. function readBytes20( ReturndataPointer rdPtr ) internal pure returns (bytes20 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes21 at `rdPtr` in returndata. function readBytes21( ReturndataPointer rdPtr ) internal pure returns (bytes21 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes22 at `rdPtr` in returndata. function readBytes22( ReturndataPointer rdPtr ) internal pure returns (bytes22 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes23 at `rdPtr` in returndata. function readBytes23( ReturndataPointer rdPtr ) internal pure returns (bytes23 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes24 at `rdPtr` in returndata. function readBytes24( ReturndataPointer rdPtr ) internal pure returns (bytes24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes25 at `rdPtr` in returndata. function readBytes25( ReturndataPointer rdPtr ) internal pure returns (bytes25 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes26 at `rdPtr` in returndata. function readBytes26( ReturndataPointer rdPtr ) internal pure returns (bytes26 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes27 at `rdPtr` in returndata. function readBytes27( ReturndataPointer rdPtr ) internal pure returns (bytes27 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes28 at `rdPtr` in returndata. function readBytes28( ReturndataPointer rdPtr ) internal pure returns (bytes28 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes29 at `rdPtr` in returndata. function readBytes29( ReturndataPointer rdPtr ) internal pure returns (bytes29 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes30 at `rdPtr` in returndata. function readBytes30( ReturndataPointer rdPtr ) internal pure returns (bytes30 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes31 at `rdPtr` in returndata. function readBytes31( ReturndataPointer rdPtr ) internal pure returns (bytes31 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes32 at `rdPtr` in returndata. function readBytes32( ReturndataPointer rdPtr ) internal pure returns (bytes32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint8 at `rdPtr` in returndata. function readUint8( ReturndataPointer rdPtr ) internal pure returns (uint8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint16 at `rdPtr` in returndata. function readUint16( ReturndataPointer rdPtr ) internal pure returns (uint16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint24 at `rdPtr` in returndata. function readUint24( ReturndataPointer rdPtr ) internal pure returns (uint24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint32 at `rdPtr` in returndata. function readUint32( ReturndataPointer rdPtr ) internal pure returns (uint32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint40 at `rdPtr` in returndata. function readUint40( ReturndataPointer rdPtr ) internal pure returns (uint40 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint48 at `rdPtr` in returndata. function readUint48( ReturndataPointer rdPtr ) internal pure returns (uint48 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint56 at `rdPtr` in returndata. function readUint56( ReturndataPointer rdPtr ) internal pure returns (uint56 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint64 at `rdPtr` in returndata. function readUint64( ReturndataPointer rdPtr ) internal pure returns (uint64 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint72 at `rdPtr` in returndata. function readUint72( ReturndataPointer rdPtr ) internal pure returns (uint72 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint80 at `rdPtr` in returndata. function readUint80( ReturndataPointer rdPtr ) internal pure returns (uint80 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint88 at `rdPtr` in returndata. function readUint88( ReturndataPointer rdPtr ) internal pure returns (uint88 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint96 at `rdPtr` in returndata. function readUint96( ReturndataPointer rdPtr ) internal pure returns (uint96 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint104 at `rdPtr` in returndata. function readUint104( ReturndataPointer rdPtr ) internal pure returns (uint104 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint112 at `rdPtr` in returndata. function readUint112( ReturndataPointer rdPtr ) internal pure returns (uint112 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint120 at `rdPtr` in returndata. function readUint120( ReturndataPointer rdPtr ) internal pure returns (uint120 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint128 at `rdPtr` in returndata. function readUint128( ReturndataPointer rdPtr ) internal pure returns (uint128 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint136 at `rdPtr` in returndata. function readUint136( ReturndataPointer rdPtr ) internal pure returns (uint136 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint144 at `rdPtr` in returndata. function readUint144( ReturndataPointer rdPtr ) internal pure returns (uint144 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint152 at `rdPtr` in returndata. function readUint152( ReturndataPointer rdPtr ) internal pure returns (uint152 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint160 at `rdPtr` in returndata. function readUint160( ReturndataPointer rdPtr ) internal pure returns (uint160 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint168 at `rdPtr` in returndata. function readUint168( ReturndataPointer rdPtr ) internal pure returns (uint168 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint176 at `rdPtr` in returndata. function readUint176( ReturndataPointer rdPtr ) internal pure returns (uint176 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint184 at `rdPtr` in returndata. function readUint184( ReturndataPointer rdPtr ) internal pure returns (uint184 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint192 at `rdPtr` in returndata. function readUint192( ReturndataPointer rdPtr ) internal pure returns (uint192 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint200 at `rdPtr` in returndata. function readUint200( ReturndataPointer rdPtr ) internal pure returns (uint200 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint208 at `rdPtr` in returndata. function readUint208( ReturndataPointer rdPtr ) internal pure returns (uint208 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint216 at `rdPtr` in returndata. function readUint216( ReturndataPointer rdPtr ) internal pure returns (uint216 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint224 at `rdPtr` in returndata. function readUint224( ReturndataPointer rdPtr ) internal pure returns (uint224 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint232 at `rdPtr` in returndata. function readUint232( ReturndataPointer rdPtr ) internal pure returns (uint232 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint240 at `rdPtr` in returndata. function readUint240( ReturndataPointer rdPtr ) internal pure returns (uint240 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint248 at `rdPtr` in returndata. function readUint248( ReturndataPointer rdPtr ) internal pure returns (uint248 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint256 at `rdPtr` in returndata. function readUint256( ReturndataPointer rdPtr ) internal pure returns (uint256 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int8 at `rdPtr` in returndata. function readInt8( ReturndataPointer rdPtr ) internal pure returns (int8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int16 at `rdPtr` in returndata. function readInt16( ReturndataPointer rdPtr ) internal pure returns (int16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int24 at `rdPtr` in returndata. function readInt24( ReturndataPointer rdPtr ) internal pure returns (int24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int32 at `rdPtr` in returndata. function readInt32( ReturndataPointer rdPtr ) internal pure returns (int32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int40 at `rdPtr` in returndata. function readInt40( ReturndataPointer rdPtr ) internal pure returns (int40 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int48 at `rdPtr` in returndata. function readInt48( ReturndataPointer rdPtr ) internal pure returns (int48 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int56 at `rdPtr` in returndata. function readInt56( ReturndataPointer rdPtr ) internal pure returns (int56 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int64 at `rdPtr` in returndata. function readInt64( ReturndataPointer rdPtr ) internal pure returns (int64 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int72 at `rdPtr` in returndata. function readInt72( ReturndataPointer rdPtr ) internal pure returns (int72 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int80 at `rdPtr` in returndata. function readInt80( ReturndataPointer rdPtr ) internal pure returns (int80 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int88 at `rdPtr` in returndata. function readInt88( ReturndataPointer rdPtr ) internal pure returns (int88 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int96 at `rdPtr` in returndata. function readInt96( ReturndataPointer rdPtr ) internal pure returns (int96 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int104 at `rdPtr` in returndata. function readInt104( ReturndataPointer rdPtr ) internal pure returns (int104 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int112 at `rdPtr` in returndata. function readInt112( ReturndataPointer rdPtr ) internal pure returns (int112 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int120 at `rdPtr` in returndata. function readInt120( ReturndataPointer rdPtr ) internal pure returns (int120 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int128 at `rdPtr` in returndata. function readInt128( ReturndataPointer rdPtr ) internal pure returns (int128 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int136 at `rdPtr` in returndata. function readInt136( ReturndataPointer rdPtr ) internal pure returns (int136 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int144 at `rdPtr` in returndata. function readInt144( ReturndataPointer rdPtr ) internal pure returns (int144 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int152 at `rdPtr` in returndata. function readInt152( ReturndataPointer rdPtr ) internal pure returns (int152 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int160 at `rdPtr` in returndata. function readInt160( ReturndataPointer rdPtr ) internal pure returns (int160 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int168 at `rdPtr` in returndata. function readInt168( ReturndataPointer rdPtr ) internal pure returns (int168 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int176 at `rdPtr` in returndata. function readInt176( ReturndataPointer rdPtr ) internal pure returns (int176 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int184 at `rdPtr` in returndata. function readInt184( ReturndataPointer rdPtr ) internal pure returns (int184 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int192 at `rdPtr` in returndata. function readInt192( ReturndataPointer rdPtr ) internal pure returns (int192 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int200 at `rdPtr` in returndata. function readInt200( ReturndataPointer rdPtr ) internal pure returns (int200 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int208 at `rdPtr` in returndata. function readInt208( ReturndataPointer rdPtr ) internal pure returns (int208 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int216 at `rdPtr` in returndata. function readInt216( ReturndataPointer rdPtr ) internal pure returns (int216 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int224 at `rdPtr` in returndata. function readInt224( ReturndataPointer rdPtr ) internal pure returns (int224 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int232 at `rdPtr` in returndata. function readInt232( ReturndataPointer rdPtr ) internal pure returns (int232 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int240 at `rdPtr` in returndata. function readInt240( ReturndataPointer rdPtr ) internal pure returns (int240 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int248 at `rdPtr` in returndata. function readInt248( ReturndataPointer rdPtr ) internal pure returns (int248 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int256 at `rdPtr` in returndata. function readInt256( ReturndataPointer rdPtr ) internal pure returns (int256 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } } library MemoryReaders { /// @dev Reads the memory pointer at `mPtr` in memory. function readMemoryPointer( MemoryPointer mPtr ) internal pure returns (MemoryPointer value) { assembly { value := mload(mPtr) } } /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes function readMaskedUint256( MemoryPointer mPtr ) internal pure returns (uint256 value) { value = mPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `mPtr` in memory. function readBool(MemoryPointer mPtr) internal pure returns (bool value) { assembly { value := mload(mPtr) } } /// @dev Reads the address at `mPtr` in memory. function readAddress( MemoryPointer mPtr ) internal pure returns (address value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes1 at `mPtr` in memory. function readBytes1( MemoryPointer mPtr ) internal pure returns (bytes1 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes2 at `mPtr` in memory. function readBytes2( MemoryPointer mPtr ) internal pure returns (bytes2 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes3 at `mPtr` in memory. function readBytes3( MemoryPointer mPtr ) internal pure returns (bytes3 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes4 at `mPtr` in memory. function readBytes4( MemoryPointer mPtr ) internal pure returns (bytes4 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes5 at `mPtr` in memory. function readBytes5( MemoryPointer mPtr ) internal pure returns (bytes5 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes6 at `mPtr` in memory. function readBytes6( MemoryPointer mPtr ) internal pure returns (bytes6 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes7 at `mPtr` in memory. function readBytes7( MemoryPointer mPtr ) internal pure returns (bytes7 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes8 at `mPtr` in memory. function readBytes8( MemoryPointer mPtr ) internal pure returns (bytes8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes9 at `mPtr` in memory. function readBytes9( MemoryPointer mPtr ) internal pure returns (bytes9 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes10 at `mPtr` in memory. function readBytes10( MemoryPointer mPtr ) internal pure returns (bytes10 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes11 at `mPtr` in memory. function readBytes11( MemoryPointer mPtr ) internal pure returns (bytes11 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes12 at `mPtr` in memory. function readBytes12( MemoryPointer mPtr ) internal pure returns (bytes12 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes13 at `mPtr` in memory. function readBytes13( MemoryPointer mPtr ) internal pure returns (bytes13 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes14 at `mPtr` in memory. function readBytes14( MemoryPointer mPtr ) internal pure returns (bytes14 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes15 at `mPtr` in memory. function readBytes15( MemoryPointer mPtr ) internal pure returns (bytes15 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes16 at `mPtr` in memory. function readBytes16( MemoryPointer mPtr ) internal pure returns (bytes16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes17 at `mPtr` in memory. function readBytes17( MemoryPointer mPtr ) internal pure returns (bytes17 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes18 at `mPtr` in memory. function readBytes18( MemoryPointer mPtr ) internal pure returns (bytes18 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes19 at `mPtr` in memory. function readBytes19( MemoryPointer mPtr ) internal pure returns (bytes19 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes20 at `mPtr` in memory. function readBytes20( MemoryPointer mPtr ) internal pure returns (bytes20 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes21 at `mPtr` in memory. function readBytes21( MemoryPointer mPtr ) internal pure returns (bytes21 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes22 at `mPtr` in memory. function readBytes22( MemoryPointer mPtr ) internal pure returns (bytes22 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes23 at `mPtr` in memory. function readBytes23( MemoryPointer mPtr ) internal pure returns (bytes23 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes24 at `mPtr` in memory. function readBytes24( MemoryPointer mPtr ) internal pure returns (bytes24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes25 at `mPtr` in memory. function readBytes25( MemoryPointer mPtr ) internal pure returns (bytes25 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes26 at `mPtr` in memory. function readBytes26( MemoryPointer mPtr ) internal pure returns (bytes26 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes27 at `mPtr` in memory. function readBytes27( MemoryPointer mPtr ) internal pure returns (bytes27 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes28 at `mPtr` in memory. function readBytes28( MemoryPointer mPtr ) internal pure returns (bytes28 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes29 at `mPtr` in memory. function readBytes29( MemoryPointer mPtr ) internal pure returns (bytes29 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes30 at `mPtr` in memory. function readBytes30( MemoryPointer mPtr ) internal pure returns (bytes30 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes31 at `mPtr` in memory. function readBytes31( MemoryPointer mPtr ) internal pure returns (bytes31 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes32 at `mPtr` in memory. function readBytes32( MemoryPointer mPtr ) internal pure returns (bytes32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint8 at `mPtr` in memory. function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint16 at `mPtr` in memory. function readUint16( MemoryPointer mPtr ) internal pure returns (uint16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint24 at `mPtr` in memory. function readUint24( MemoryPointer mPtr ) internal pure returns (uint24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint32 at `mPtr` in memory. function readUint32( MemoryPointer mPtr ) internal pure returns (uint32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint40 at `mPtr` in memory. function readUint40( MemoryPointer mPtr ) internal pure returns (uint40 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint48 at `mPtr` in memory. function readUint48( MemoryPointer mPtr ) internal pure returns (uint48 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint56 at `mPtr` in memory. function readUint56( MemoryPointer mPtr ) internal pure returns (uint56 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint64 at `mPtr` in memory. function readUint64( MemoryPointer mPtr ) internal pure returns (uint64 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint72 at `mPtr` in memory. function readUint72( MemoryPointer mPtr ) internal pure returns (uint72 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint80 at `mPtr` in memory. function readUint80( MemoryPointer mPtr ) internal pure returns (uint80 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint88 at `mPtr` in memory. function readUint88( MemoryPointer mPtr ) internal pure returns (uint88 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint96 at `mPtr` in memory. function readUint96( MemoryPointer mPtr ) internal pure returns (uint96 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint104 at `mPtr` in memory. function readUint104( MemoryPointer mPtr ) internal pure returns (uint104 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint112 at `mPtr` in memory. function readUint112( MemoryPointer mPtr ) internal pure returns (uint112 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint120 at `mPtr` in memory. function readUint120( MemoryPointer mPtr ) internal pure returns (uint120 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint128 at `mPtr` in memory. function readUint128( MemoryPointer mPtr ) internal pure returns (uint128 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint136 at `mPtr` in memory. function readUint136( MemoryPointer mPtr ) internal pure returns (uint136 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint144 at `mPtr` in memory. function readUint144( MemoryPointer mPtr ) internal pure returns (uint144 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint152 at `mPtr` in memory. function readUint152( MemoryPointer mPtr ) internal pure returns (uint152 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint160 at `mPtr` in memory. function readUint160( MemoryPointer mPtr ) internal pure returns (uint160 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint168 at `mPtr` in memory. function readUint168( MemoryPointer mPtr ) internal pure returns (uint168 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint176 at `mPtr` in memory. function readUint176( MemoryPointer mPtr ) internal pure returns (uint176 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint184 at `mPtr` in memory. function readUint184( MemoryPointer mPtr ) internal pure returns (uint184 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint192 at `mPtr` in memory. function readUint192( MemoryPointer mPtr ) internal pure returns (uint192 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint200 at `mPtr` in memory. function readUint200( MemoryPointer mPtr ) internal pure returns (uint200 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint208 at `mPtr` in memory. function readUint208( MemoryPointer mPtr ) internal pure returns (uint208 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint216 at `mPtr` in memory. function readUint216( MemoryPointer mPtr ) internal pure returns (uint216 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint224 at `mPtr` in memory. function readUint224( MemoryPointer mPtr ) internal pure returns (uint224 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint232 at `mPtr` in memory. function readUint232( MemoryPointer mPtr ) internal pure returns (uint232 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint240 at `mPtr` in memory. function readUint240( MemoryPointer mPtr ) internal pure returns (uint240 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint248 at `mPtr` in memory. function readUint248( MemoryPointer mPtr ) internal pure returns (uint248 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint256 at `mPtr` in memory. function readUint256( MemoryPointer mPtr ) internal pure returns (uint256 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int8 at `mPtr` in memory. function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int16 at `mPtr` in memory. function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int24 at `mPtr` in memory. function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int32 at `mPtr` in memory. function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int40 at `mPtr` in memory. function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int48 at `mPtr` in memory. function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int56 at `mPtr` in memory. function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int64 at `mPtr` in memory. function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int72 at `mPtr` in memory. function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int80 at `mPtr` in memory. function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int88 at `mPtr` in memory. function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int96 at `mPtr` in memory. function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int104 at `mPtr` in memory. function readInt104( MemoryPointer mPtr ) internal pure returns (int104 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int112 at `mPtr` in memory. function readInt112( MemoryPointer mPtr ) internal pure returns (int112 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int120 at `mPtr` in memory. function readInt120( MemoryPointer mPtr ) internal pure returns (int120 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int128 at `mPtr` in memory. function readInt128( MemoryPointer mPtr ) internal pure returns (int128 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int136 at `mPtr` in memory. function readInt136( MemoryPointer mPtr ) internal pure returns (int136 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int144 at `mPtr` in memory. function readInt144( MemoryPointer mPtr ) internal pure returns (int144 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int152 at `mPtr` in memory. function readInt152( MemoryPointer mPtr ) internal pure returns (int152 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int160 at `mPtr` in memory. function readInt160( MemoryPointer mPtr ) internal pure returns (int160 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int168 at `mPtr` in memory. function readInt168( MemoryPointer mPtr ) internal pure returns (int168 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int176 at `mPtr` in memory. function readInt176( MemoryPointer mPtr ) internal pure returns (int176 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int184 at `mPtr` in memory. function readInt184( MemoryPointer mPtr ) internal pure returns (int184 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int192 at `mPtr` in memory. function readInt192( MemoryPointer mPtr ) internal pure returns (int192 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int200 at `mPtr` in memory. function readInt200( MemoryPointer mPtr ) internal pure returns (int200 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int208 at `mPtr` in memory. function readInt208( MemoryPointer mPtr ) internal pure returns (int208 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int216 at `mPtr` in memory. function readInt216( MemoryPointer mPtr ) internal pure returns (int216 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int224 at `mPtr` in memory. function readInt224( MemoryPointer mPtr ) internal pure returns (int224 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int232 at `mPtr` in memory. function readInt232( MemoryPointer mPtr ) internal pure returns (int232 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int240 at `mPtr` in memory. function readInt240( MemoryPointer mPtr ) internal pure returns (int240 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int248 at `mPtr` in memory. function readInt248( MemoryPointer mPtr ) internal pure returns (int248 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int256 at `mPtr` in memory. function readInt256( MemoryPointer mPtr ) internal pure returns (int256 value) { assembly { value := mload(mPtr) } } } library MemoryWriters { /// @dev Writes `valuePtr` to memory at `mPtr`. function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure { assembly { mstore(mPtr, valuePtr) } } /// @dev Writes a boolean `value` to `mPtr` in memory. function write(MemoryPointer mPtr, bool value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes an address `value` to `mPtr` in memory. function write(MemoryPointer mPtr, address value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes a bytes32 `value` to `mPtr` in memory. /// Separate name to disambiguate literal write parameters. function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes a uint256 `value` to `mPtr` in memory. function write(MemoryPointer mPtr, uint256 value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes an int256 `value` to `mPtr` in memory. /// Separate name to disambiguate literal write parameters. function writeInt(MemoryPointer mPtr, int256 value) internal pure { assembly { mstore(mPtr, value) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /* * -------------------------- Disambiguation & Other Notes --------------------- * - The term "head" is used as it is in the documentation for ABI encoding, * but only in reference to dynamic types, i.e. it always refers to the * offset or pointer to the body of a dynamic type. In calldata, the head * is always an offset (relative to the parent object), while in memory, * the head is always the pointer to the body. More information found here: * https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding * - Note that the length of an array is separate from and precedes the * head of the array. * * - The term "body" is used in place of the term "head" used in the ABI * documentation. It refers to the start of the data for a dynamic type, * e.g. the first word of a struct or the first word of the first element * in an array. * * - The term "pointer" is used to describe the absolute position of a value * and never an offset relative to another value. * - The suffix "_ptr" refers to a memory pointer. * - The suffix "_cdPtr" refers to a calldata pointer. * * - The term "offset" is used to describe the position of a value relative * to some parent value. For example, OrderParameters_conduit_offset is the * offset to the "conduit" value in the OrderParameters struct relative to * the start of the body. * - Note: Offsets are used to derive pointers. * * - Some structs have pointers defined for all of their fields in this file. * Lines which are commented out are fields that are not used in the * codebase but have been left in for readability. */ // Declare constants for name, version, and reentrancy sentinel values. // Name is right padded, so it touches the length which is left padded. This // enables writing both values at once. Length goes at byte 95 in memory, and // name fills bytes 96-109, so both values can be written left-padded to 77. uint256 constant NameLengthPtr = 0x4D; uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E; uint256 constant information_version_offset = 0; uint256 constant information_version_cd_offset = 0x60; uint256 constant information_domainSeparator_offset = 0x20; uint256 constant information_conduitController_offset = 0x40; uint256 constant information_versionLengthPtr = 0x63; uint256 constant information_versionWithLength = 0x03312e36; // 1.6 uint256 constant information_length = 0xa0; // uint256(uint32(bytes4(keccak256("_REENTRANCY_GUARD_SLOT")))) uint256 constant _REENTRANCY_GUARD_SLOT = 0x929eee14; /* * * --------------------------------------------------------------------------+ * Opcode | Mnemonic | Stack | Memory | * --------------------------------------------------------------------------| * 60 0x02 | PUSH1 0x02 | 0x02 | | * 60 0x1e | PUSH1 0x1e | 0x1e 0x02 | | * 61 0x3d5c | PUSH2 0x3d5c | 0x3d5c 0x1e 0x02 | | * 3d | RETURNDATASIZE | 0 0x3d5c 0x1e 0x02 | | * | * ::: store deployed bytecode in memory: (3d) RETURNDATASIZE (5c) TLOAD ::: | * 52 | MSTORE | 0x1e 0x02 | [0..0x20): 0x3d5c | * f3 | RETURN | | [0..0x20): 0x3d5c | * --------------------------------------------------------------------------+ */ uint256 constant _TLOAD_TEST_PAYLOAD = 0x6002_601e_613d5c_3d_52_f3; uint256 constant _TLOAD_TEST_PAYLOAD_LENGTH = 0x0a; uint256 constant _TLOAD_TEST_PAYLOAD_OFFSET = 0x16; uint256 constant _NOT_ENTERED_TSTORE = 0; uint256 constant _ENTERED_TSTORE = 1; uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_TSTORE = 2; uint256 constant _TSTORE_ENABLED_SSTORE = 0; uint256 constant _NOT_ENTERED_SSTORE = 1; uint256 constant _ENTERED_SSTORE = 2; uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_SSTORE = 3; uint256 constant Offset_fulfillAdvancedOrder_criteriaResolvers = 0x20; uint256 constant Offset_fulfillAvailableOrders_offerFulfillments = 0x20; uint256 constant Offset_fulfillAvailableOrders_considerationFulfillments = 0x40; uint256 constant Offset_fulfillAvailableAdvancedOrders_criteriaResolvers = 0x20; uint256 constant Offset_fulfillAvailableAdvancedOrders_offerFulfillments = 0x40; uint256 constant Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts = (0x60); uint256 constant Offset_matchOrders_fulfillments = 0x20; uint256 constant Offset_matchAdvancedOrders_criteriaResolvers = 0x20; uint256 constant Offset_matchAdvancedOrders_fulfillments = 0x40; // Common Offsets // Offsets for identically positioned fields shared by: // OfferItem, ConsiderationItem, SpentItem, ReceivedItem uint256 constant Selector_length = 0x4; uint256 constant Common_token_offset = 0x20; uint256 constant Common_identifier_offset = 0x40; uint256 constant Common_amount_offset = 0x60; uint256 constant Common_endAmount_offset = 0x80; uint256 constant SpentItem_size = 0x80; uint256 constant SpentItem_size_shift = 0x7; uint256 constant OfferItem_size = 0xa0; uint256 constant OfferItem_size_with_head_pointer = 0xc0; uint256 constant ReceivedItem_size_excluding_recipient = 0x80; uint256 constant ReceivedItem_size = 0xa0; uint256 constant ReceivedItem_amount_offset = 0x60; uint256 constant ReceivedItem_recipient_offset = 0x80; uint256 constant ReceivedItem_CommonParams_size = 0x60; uint256 constant ConsiderationItem_size = 0xc0; uint256 constant ConsiderationItem_size_with_head_pointer = 0xe0; uint256 constant ConsiderationItem_recipient_offset = 0xa0; // Store the same constant in an abbreviated format for a line length fix. uint256 constant ConsiderItem_recipient_offset = 0xa0; uint256 constant Execution_offerer_offset = 0x20; uint256 constant Execution_conduit_offset = 0x40; // uint256 constant OrderParameters_offerer_offset = 0x00; uint256 constant OrderParameters_zone_offset = 0x20; uint256 constant OrderParameters_offer_head_offset = 0x40; uint256 constant OrderParameters_consideration_head_offset = 0x60; // uint256 constant OrderParameters_orderType_offset = 0x80; uint256 constant OrderParameters_startTime_offset = 0xa0; uint256 constant OrderParameters_endTime_offset = 0xc0; uint256 constant OrderParameters_zoneHash_offset = 0xe0; uint256 constant OrderParameters_salt_offset = 0x100; uint256 constant OrderParameters_conduit_offset = 0x120; uint256 constant OrderParameters_counter_offset = 0x140; uint256 constant Fulfillment_itemIndex_offset = 0x20; uint256 constant AdvancedOrder_head_size = 0xa0; uint256 constant AdvancedOrder_numerator_offset = 0x20; uint256 constant AdvancedOrder_denominator_offset = 0x40; uint256 constant AdvancedOrder_signature_offset = 0x60; uint256 constant AdvancedOrder_extraData_offset = 0x80; uint256 constant OrderStatus_ValidatedAndNotCancelled = 1; uint256 constant OrderStatus_filledNumerator_offset = 0x10; uint256 constant OrderStatus_filledDenominator_offset = 0x88; uint256 constant OrderStatus_ValidatedAndNotCancelledAndFullyFilled = ( 0x0000000000000000000000000000010000000000000000000000000000010001 ); uint256 constant ThirtyOneBytes = 0x1f; uint256 constant OneWord = 0x20; uint256 constant TwoWords = 0x40; uint256 constant ThreeWords = 0x60; uint256 constant FourWords = 0x80; uint256 constant FiveWords = 0xa0; uint256 constant OneWordShift = 0x5; uint256 constant TwoWordsShift = 0x6; uint256 constant SixtyThreeBytes = 0x3f; uint256 constant OnlyFullWordMask = 0xffffffe0; uint256 constant FreeMemoryPointerSlot = 0x40; uint256 constant ZeroSlot = 0x60; uint256 constant DefaultFreeMemoryPointer = 0x80; uint256 constant Slot0x80 = 0x80; uint256 constant Slot0xA0 = 0xa0; uint256 constant BasicOrder_common_params_size = 0xa0; uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160; uint256 constant BasicOrder_receivedItemByteMap = (0x0000010102030000000000000000000000000000000000000000000000000000); uint256 constant BasicOrder_offeredItemByteMap = (0x0203020301010000000000000000000000000000000000000000000000000000); uint256 constant BasicOrder_consideration_offset_from_offer = 0xa0; bytes32 constant OrdersMatchedTopic0 = (0x4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e7); uint256 constant EIP712_Order_size = 0x180; uint256 constant EIP712_OfferItem_size = 0xc0; uint256 constant EIP712_ConsiderationItem_size = 0xe0; uint256 constant AdditionalRecipient_size = 0x40; uint256 constant AdditionalRecipient_size_shift = 0x6; uint256 constant EIP712_DomainSeparator_offset = 0x02; uint256 constant EIP712_OrderHash_offset = 0x22; uint256 constant EIP712_DigestPayload_size = 0x42; uint256 constant EIP712_domainData_nameHash_offset = 0x20; uint256 constant EIP712_domainData_versionHash_offset = 0x40; uint256 constant EIP712_domainData_chainId_offset = 0x60; uint256 constant EIP712_domainData_verifyingContract_offset = 0x80; uint256 constant EIP712_domainData_size = 0xa0; // Minimum BulkOrder proof size: 64 bytes for signature + 3 for key + 32 for 1 // sibling. Maximum BulkOrder proof size: 65 bytes for signature + 3 for key + // 768 for 24 siblings. uint256 constant BulkOrderProof_minSize = 0x63; uint256 constant BulkOrderProof_rangeSize = 0x2e2; uint256 constant BulkOrderProof_lengthAdjustmentBeforeMask = 0x1d; uint256 constant BulkOrderProof_lengthRangeAfterMask = 0x2; uint256 constant BulkOrderProof_keyShift = 0xe8; uint256 constant BulkOrderProof_keySize = 0x3; uint256 constant BulkOrder_Typehash_Height_One = (0x3ca2711d29384747a8f61d60aad3c450405f7aaff5613541dee28df2d6986d32); uint256 constant BulkOrder_Typehash_Height_Two = (0xbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde30); uint256 constant BulkOrder_Typehash_Height_Three = (0x53c6f6856e13104584dd0797ca2b2779202dc2597c6066a42e0d8fe990b0024d); uint256 constant BulkOrder_Typehash_Height_Four = (0xa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af1); uint256 constant BulkOrder_Typehash_Height_Five = (0x39c9d33c18e050dda0aeb9a8086fb16fc12d5d64536780e1da7405a800b0b9f6); uint256 constant BulkOrder_Typehash_Height_Six = (0x1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b55); uint256 constant BulkOrder_Typehash_Height_Seven = (0xca74fab2fece9a1d58234a274220ad05ca096a92ef6a1ca1750b9d90c948955c); uint256 constant BulkOrder_Typehash_Height_Eight = (0x7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc14); uint256 constant BulkOrder_Typehash_Height_Nine = (0xbed7be92d41c56f9e59ac7a6272185299b815ddfabc3f25deb51fe55fe2f9e8a); uint256 constant BulkOrder_Typehash_Height_Ten = (0xd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da05); uint256 constant BulkOrder_Typehash_Height_Eleven = (0x896c3f349c4da741c19b37fec49ed2e44d738e775a21d9c9860a69d67a3dae53); uint256 constant BulkOrder_Typehash_Height_Twelve = (0xbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f); uint256 constant BulkOrder_Typehash_Height_Thirteen = (0xe6ae19322608dd1f8a8d56aab48ed9c28be489b689f4b6c91268563efc85f20e); uint256 constant BulkOrder_Typehash_Height_Fourteen = (0x6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a852590); uint256 constant BulkOrder_Typehash_Height_Fifteen = (0xd1eb68309202b7106b891e109739dbbd334a1817fe5d6202c939e75cf5e35ca9); uint256 constant BulkOrder_Typehash_Height_Sixteen = (0x1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde8); uint256 constant BulkOrder_Typehash_Height_Seventeen = (0xeee9a1392aa395c7002308119a58f2582777a75e54e0c1d5d5437bd2e8bf6222); uint256 constant BulkOrder_Typehash_Height_Eighteen = (0xc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d85877); uint256 constant BulkOrder_Typehash_Height_Nineteen = (0x0efca7572ac20f5ae84db0e2940674f7eca0a4726fa1060ffc2d18cef54b203d); uint256 constant BulkOrder_Typehash_Height_Twenty = (0x5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e64350017); uint256 constant BulkOrder_Typehash_Height_TwentyOne = (0x80987079d291feebf21c2230e69add0f283cee0b8be492ca8050b4185a2ff719); uint256 constant BulkOrder_Typehash_Height_TwentyTwo = (0x3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d); uint256 constant BulkOrder_Typehash_Height_TwentyThree = (0x5d6a3f098a0bc373f808c619b1bb4028208721b3c4f8d6bc8a874d659814eb76); uint256 constant BulkOrder_Typehash_Height_TwentyFour = (0x1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c); uint256 constant receivedItemsHash_ptr = 0x60; /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * data for OrderFulfilled * * event OrderFulfilled( * bytes32 orderHash, * address indexed offerer, * address indexed zone, * address fulfiller, * SpentItem[] offer, * > (itemType, token, id, amount) * ReceivedItem[] consideration * > (itemType, token, id, amount, recipient) * ) * * - 0x00: orderHash * - 0x20: fulfiller * - 0x40: offer offset (0x80) * - 0x60: consideration offset (0x120) * - 0x80: offer.length (1) * - 0xa0: offerItemType * - 0xc0: offerToken * - 0xe0: offerIdentifier * - 0x100: offerAmount * - 0x120: consideration.length (1 + additionalRecipients.length) * - 0x140: considerationItemType * - 0x160: considerationToken * - 0x180: considerationIdentifier * - 0x1a0: considerationAmount * - 0x1c0: considerationRecipient * - ... */ // Minimum length of the OrderFulfilled event data. // Must be added to the size of the ReceivedItem array for additionalRecipients // (0xa0 * additionalRecipients.length) to calculate full size of the buffer. uint256 constant OrderFulfilled_baseSize = 0x1e0; uint256 constant OrderFulfilled_selector = (0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31); // Minimum offset in memory to OrderFulfilled event data. // Must be added to the size of the EIP712 hash array for additionalRecipients // (32 * additionalRecipients.length) to calculate the pointer to event data. uint256 constant OrderFulfilled_baseOffset = 0x180; uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0; uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200; uint256 constant OrderFulfilled_offer_length_offset_relativeTo_baseOffset = ( 0x80 ); uint256 constant OrderFulfilled_offer_itemType_offset_relativeTo_baseOffset = ( 0xa0 ); uint256 constant OrderFulfilled_offer_token_offset_relativeTo_baseOffset = 0xc0; // Related constants used for restricted order checks on basic orders. uint256 constant OrderFulfilled_baseDataSize = 0x160; // uint256 constant ValidateOrder_offerDataOffset = 0x184; // uint256 constant RatifyOrder_offerDataOffset = 0xc4; // uint256 constant OrderFulfilled_orderHash_offset = 0x00; uint256 constant OrderFulfilled_fulfiller_offset = 0x20; uint256 constant OrderFulfilled_offer_head_offset = 0x40; uint256 constant OrderFulfilled_offer_body_offset = 0x80; uint256 constant OrderFulfilled_consideration_head_offset = 0x60; uint256 constant OrderFulfilled_consideration_body_offset = 0x120; /* * 3 memory slots/words for `authorizeOrder` and `validateOrder` calldata * to be used for tails of extra data (length 0) and order hashes (length 1) */ uint256 constant OrderFulfilled_post_memory_region_reservedBytes = 0x60; /* * OrderFulfilled_offer_length_baseOffset - 12 * 0x20 * we back up 12 words from where the `OrderFulfilled`'s data * for spent items start to be rewritten for `authorizeOrder` * and `validateOrder`. Let the reference pointer be `ptr` * pointing to the `OrderFulfilled`'s spent item array's length memory * position then we would have: * * ptr - 0x0180 : zero-padded calldata selector * ptr - 0x0160 : ZoneParameter's struct head (0x20) * ptr - 0x0140 : order hash * ptr - 0x0120 : fulfiller (msg.sender) * ptr - 0x0100 : offerer * ptr - 0x00e0 : spent items' head * ptr - 0x00c0 : received items' head * ptr - 0x00a0 : extra data / context head * ptr - 0x0080 : order hashes head * ptr - 0x0060 : start time * ptr - 0x0040 : end time * ptr - 0x0020 : zone hash * ptr - 0x0000 : offer.length (1) * ... * * Note that the padded calldata selector will be at minimum at the * 0x80 memory slot. */ uint256 constant authorizeOrder_calldata_baseOffset = ( OrderFulfilled_offer_length_baseOffset - 0x180 ); // BasicOrderParameters uint256 constant BasicOrder_parameters_cdPtr = 0x04; uint256 constant BasicOrder_considerationToken_cdPtr = 0x24; uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44; uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64; uint256 constant BasicOrder_offerer_cdPtr = 0x84; uint256 constant BasicOrder_zone_cdPtr = 0xa4; uint256 constant BasicOrder_offerToken_cdPtr = 0xc4; uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4; uint256 constant BasicOrder_offerAmount_cdPtr = 0x104; uint256 constant BasicOrder_basicOrderParameters_cd_offset = 0x24; uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124; uint256 constant BasicOrder_startTime_cdPtr = 0x144; uint256 constant BasicOrder_endTime_cdPtr = 0x164; // uint256 constant BasicOrder_zoneHash_cdPtr = 0x184; // uint256 constant BasicOrder_salt_cdPtr = 0x1a4; uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4; uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4; uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204; uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224; uint256 constant BasicOrder_signature_cdPtr = 0x244; uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264; uint256 constant BasicOrder_addlRecipients_length_cdPtr = 0x264; uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284; uint256 constant BasicOrder_parameters_ptr = 0x20; uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * EIP712 data for ConsiderationItem * - 0x80: ConsiderationItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier * - 0x100: startAmount * - 0x120: endAmount * - 0x140: recipient */ uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0; uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0; uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0; uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100; uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120; // uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140; /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * EIP712 data for OfferItem * - 0x80: OfferItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier (reused for offeredItemsHash) * - 0x100: startAmount * - 0x120: endAmount */ uint256 constant BasicOrder_offerItem_typeHash_ptr = 0x80; uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0; uint256 constant BasicOrder_offerItem_token_ptr = 0xc0; // uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0; // uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100; uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120; /* * Memory layout in _prepareBasicFulfillmentFromCalldata of * EIP712 data for Order * - 0x80: Order EIP-712 typehash (constant) * - 0xa0: orderParameters.offerer * - 0xc0: orderParameters.zone * - 0xe0: keccak256(abi.encodePacked(offerHashes)) * - 0x100: keccak256(abi.encodePacked(considerationHashes)) * - 0x120: orderType * - 0x140: startTime * - 0x160: endTime * - 0x180: zoneHash * - 0x1a0: salt * - 0x1c0: conduit * - 0x1e0: _counters[orderParameters.offerer] (from storage) */ uint256 constant BasicOrder_order_typeHash_ptr = 0x80; uint256 constant BasicOrder_order_offerer_ptr = 0xa0; // uint256 constant BasicOrder_order_zone_ptr = 0xc0; uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0; uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100; uint256 constant BasicOrder_order_orderType_ptr = 0x120; uint256 constant BasicOrder_order_startTime_ptr = 0x140; // uint256 constant BasicOrder_order_endTime_ptr = 0x160; // uint256 constant BasicOrder_order_zoneHash_ptr = 0x180; // uint256 constant BasicOrder_order_salt_ptr = 0x1a0; // uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0; uint256 constant BasicOrder_order_counter_ptr = 0x1e0; uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240; uint256 constant BasicOrder_signature_ptr = 0x260; uint256 constant BasicOrder_startTimeThroughZoneHash_size = 0x60; uint256 constant ContractOrder_orderHash_offerer_shift = 0x60; uint256 constant Counter_blockhash_shift = 0x80; // Signature-related bytes32 constant EIP2098_allButHighestBitMask = (0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = (0x0000000000000000000000000000000000000000000000000000000101000000); uint256 constant ECDSA_MaxLength = 65; uint256 constant ECDSA_signature_s_offset = 0x40; uint256 constant ECDSA_signature_v_offset = 0x60; bytes32 constant EIP1271_isValidSignature_selector = (0x1626ba7e00000000000000000000000000000000000000000000000000000000); uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40; uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44; uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64; uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40; uint256 constant EIP_712_PREFIX = (0x1901000000000000000000000000000000000000000000000000000000000000); uint256 constant ExtraGasBuffer = 0x20; uint256 constant CostPerWord = 0x3; uint256 constant MemoryExpansionCoefficientShift = 0x9; uint256 constant Create2AddressDerivation_ptr = 0x0b; uint256 constant Create2AddressDerivation_length = 0x55; uint256 constant MaskOverByteTwelve = (0x0000000000000000000000ff0000000000000000000000000000000000000000); uint256 constant MaskOverLastTwentyBytes = (0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff); uint256 constant AddressDirtyUpperBitThreshold = (0x0000000000000000000000010000000000000000000000000000000000000000); uint256 constant MaskOverFirstFourBytes = (0xffffffff00000000000000000000000000000000000000000000000000000000); uint256 constant Conduit_execute_signature = (0x4ce34aa200000000000000000000000000000000000000000000000000000000); uint256 constant MaxUint8 = 0xff; uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff; uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20; uint256 constant Conduit_execute_ConduitTransfer_length = 0x01; uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04; uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24; uint256 constant Conduit_execute_transferItemType_ptr = 0x44; uint256 constant Conduit_execute_transferToken_ptr = 0x64; uint256 constant Conduit_execute_transferFrom_ptr = 0x84; uint256 constant Conduit_execute_transferTo_ptr = 0xa4; uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4; uint256 constant Conduit_execute_transferAmount_ptr = 0xe4; uint256 constant OneConduitExecute_size = 0x104; // Sentinel value to indicate that the conduit accumulator is not armed. uint256 constant AccumulatorDisarmed = 0x20; uint256 constant AccumulatorArmed = 0x40; uint256 constant Accumulator_conduitKey_ptr = 0x20; uint256 constant Accumulator_selector_ptr = 0x40; uint256 constant Accumulator_array_offset_ptr = 0x44; uint256 constant Accumulator_array_length_ptr = 0x64; uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c; uint256 constant Accumulator_array_offset = 0x20; uint256 constant Conduit_transferItem_size = 0xc0; uint256 constant Conduit_transferItem_token_ptr = 0x20; uint256 constant Conduit_transferItem_from_ptr = 0x40; uint256 constant Conduit_transferItem_to_ptr = 0x60; uint256 constant Conduit_transferItem_identifier_ptr = 0x80; uint256 constant Conduit_transferItem_amount_ptr = 0xa0; uint256 constant Ecrecover_precompile = 0x1; uint256 constant Ecrecover_args_size = 0x80; uint256 constant Signature_lower_v = 27; // Bitmask that only gives a non-zero value if masked with a non-match selector. uint256 constant NonMatchSelector_MagicMask = (0x4000000000000000000000000000000000000000000000000000000000); // First bit indicates that a NATIVE offer items has been used and the 231st bit // indicates that a non match selector has been called. uint256 constant NonMatchSelector_InvalidErrorValue = (0x4000000000000000000000000000000000000000000000000000000001); /** * @dev Selector and offsets for generateOrder * * function generateOrder( * address fulfiller, * SpentItem[] calldata minimumReceived, * SpentItem[] calldata maximumSpent, * bytes calldata context * ) */ uint256 constant generateOrder_selector = 0x98919765; uint256 constant generateOrder_selector_offset = 0x1c; uint256 constant generateOrder_head_offset = 0x04; uint256 constant generateOrder_minimumReceived_head_offset = 0x20; uint256 constant generateOrder_maximumSpent_head_offset = 0x40; uint256 constant generateOrder_context_head_offset = 0x60; uint256 constant generateOrder_base_tail_offset = 0x80; uint256 constant generateOrder_maximum_returned_array_length = 0xffff; uint256 constant ratifyOrder_selector = 0xf4dd92ce; uint256 constant ratifyOrder_selector_offset = 0x1c; uint256 constant ratifyOrder_head_offset = 0x04; // uint256 constant ratifyOrder_offer_head_offset = 0x00; uint256 constant ratifyOrder_consideration_head_offset = 0x20; uint256 constant ratifyOrder_context_head_offset = 0x40; uint256 constant ratifyOrder_orderHashes_head_offset = 0x60; uint256 constant ratifyOrder_contractNonce_offset = 0x80; uint256 constant ratifyOrder_base_tail_offset = 0xa0; uint256 constant validateOrder_selector = 0x17b1f942; uint256 constant validateOrder_selector_offset = 0x1c; uint256 constant validateOrder_head_offset = 0x04; uint256 constant validateOrder_zoneParameters_offset = 0x20; uint256 constant authorizeOrder_selector = 0x01e4d72a; uint256 constant authorizeOrder_selector_offset = 0x1c; uint256 constant authorizeOrder_head_offset = 0x04; uint256 constant authorizeOrder_zoneParameters_offset = 0x20; // uint256 constant ZoneParameters_orderHash_offset = 0x00; uint256 constant ZoneParameters_fulfiller_offset = 0x20; uint256 constant ZoneParameters_offerer_offset = 0x40; uint256 constant ZoneParameters_offer_head_offset = 0x60; uint256 constant ZoneParameters_consideration_head_offset = 0x80; uint256 constant ZoneParameters_extraData_head_offset = 0xa0; uint256 constant ZoneParameters_orderHashes_head_offset = 0xc0; uint256 constant ZoneParameters_startTime_offset = 0xe0; uint256 constant ZoneParameters_endTime_offset = 0x100; uint256 constant ZoneParameters_zoneHash_offset = 0x120; uint256 constant ZoneParameters_base_tail_offset = 0x140; uint256 constant ZoneParameters_selectorAndPointer_length = 0x24; uint256 constant ZoneParameters_basicOrderFixedElements_length = 0x44; // ConsiderationDecoder Constants uint256 constant OrderParameters_head_size = 0x0160; uint256 constant OrderParameters_totalOriginalConsiderationItems_offset = ( 0x0140 ); uint256 constant AdvancedOrderPlusOrderParameters_head_size = 0x0200; uint256 constant Order_signature_offset = 0x20; uint256 constant Order_head_size = 0x40; uint256 constant AdvancedOrder_fixed_segment_0 = 0x40; uint256 constant CriteriaResolver_head_size = 0xa0; uint256 constant CriteriaResolver_fixed_segment_0 = 0x80; uint256 constant CriteriaResolver_criteriaProof_offset = 0x80; uint256 constant FulfillmentComponent_mem_tail_size = 0x40; uint256 constant FulfillmentComponent_mem_tail_size_shift = 0x6; uint256 constant Fulfillment_head_size = 0x40; uint256 constant Fulfillment_considerationComponents_offset = 0x20; uint256 constant OrderComponents_OrderParameters_common_head_size = 0x0140;
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; enum OrderType { // 0: no partial fills, anyone can execute FULL_OPEN, // 1: partial fills supported, anyone can execute PARTIAL_OPEN, // 2: no partial fills, only offerer or zone can execute FULL_RESTRICTED, // 3: partial fills supported, only offerer or zone can execute PARTIAL_RESTRICTED, // 4: contract order type CONTRACT } enum BasicOrderType { // 0: no partial fills, anyone can execute ETH_TO_ERC721_FULL_OPEN, // 1: partial fills supported, anyone can execute ETH_TO_ERC721_PARTIAL_OPEN, // 2: no partial fills, only offerer or zone can execute ETH_TO_ERC721_FULL_RESTRICTED, // 3: partial fills supported, only offerer or zone can execute ETH_TO_ERC721_PARTIAL_RESTRICTED, // 4: no partial fills, anyone can execute ETH_TO_ERC1155_FULL_OPEN, // 5: partial fills supported, anyone can execute ETH_TO_ERC1155_PARTIAL_OPEN, // 6: no partial fills, only offerer or zone can execute ETH_TO_ERC1155_FULL_RESTRICTED, // 7: partial fills supported, only offerer or zone can execute ETH_TO_ERC1155_PARTIAL_RESTRICTED, // 8: no partial fills, anyone can execute ERC20_TO_ERC721_FULL_OPEN, // 9: partial fills supported, anyone can execute ERC20_TO_ERC721_PARTIAL_OPEN, // 10: no partial fills, only offerer or zone can execute ERC20_TO_ERC721_FULL_RESTRICTED, // 11: partial fills supported, only offerer or zone can execute ERC20_TO_ERC721_PARTIAL_RESTRICTED, // 12: no partial fills, anyone can execute ERC20_TO_ERC1155_FULL_OPEN, // 13: partial fills supported, anyone can execute ERC20_TO_ERC1155_PARTIAL_OPEN, // 14: no partial fills, only offerer or zone can execute ERC20_TO_ERC1155_FULL_RESTRICTED, // 15: partial fills supported, only offerer or zone can execute ERC20_TO_ERC1155_PARTIAL_RESTRICTED, // 16: no partial fills, anyone can execute ERC721_TO_ERC20_FULL_OPEN, // 17: partial fills supported, anyone can execute ERC721_TO_ERC20_PARTIAL_OPEN, // 18: no partial fills, only offerer or zone can execute ERC721_TO_ERC20_FULL_RESTRICTED, // 19: partial fills supported, only offerer or zone can execute ERC721_TO_ERC20_PARTIAL_RESTRICTED, // 20: no partial fills, anyone can execute ERC1155_TO_ERC20_FULL_OPEN, // 21: partial fills supported, anyone can execute ERC1155_TO_ERC20_PARTIAL_OPEN, // 22: no partial fills, only offerer or zone can execute ERC1155_TO_ERC20_FULL_RESTRICTED, // 23: partial fills supported, only offerer or zone can execute ERC1155_TO_ERC20_PARTIAL_RESTRICTED } enum BasicOrderRouteType { // 0: provide Ether (or other native token) to receive offered ERC721 item. ETH_TO_ERC721, // 1: provide Ether (or other native token) to receive offered ERC1155 item. ETH_TO_ERC1155, // 2: provide ERC20 item to receive offered ERC721 item. ERC20_TO_ERC721, // 3: provide ERC20 item to receive offered ERC1155 item. ERC20_TO_ERC1155, // 4: provide ERC721 item to receive offered ERC20 item. ERC721_TO_ERC20, // 5: provide ERC1155 item to receive offered ERC20 item. ERC1155_TO_ERC20 } enum ItemType { // 0: ETH on mainnet, MATIC on polygon, etc. NATIVE, // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work) ERC20, // 2: ERC721 items ERC721, // 3: ERC1155 items ERC1155, // 4: ERC721 items where a number of tokenIds are supported ERC721_WITH_CRITERIA, // 5: ERC1155 items where a number of ids are supported ERC1155_WITH_CRITERIA } enum Side { // 0: Items that can be spent OFFER, // 1: Items that must be received CONSIDERATION }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ItemType, OrderType } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, CriteriaResolver, OfferItem, OrderParameters, ReceivedItem, SpentItem } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol"; import { CriteriaResolution } from "./CriteriaResolution.sol"; import { AmountDeriver } from "./AmountDeriver.sol"; import { _revertInsufficientNativeTokensSupplied, _revertInvalidNativeOfferItem } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { AccumulatorDisarmed, ConsiderationItem_recipient_offset, ReceivedItem_amount_offset, ReceivedItem_recipient_offset } from "seaport-types/src/lib/ConsiderationConstants.sol"; /** * @title OrderFulfiller * @author 0age * @notice OrderFulfiller contains logic related to order fulfillment where a * single order is being fulfilled and where basic order fulfillment is * not available as an option. */ contract OrderFulfiller is BasicOrderFulfiller, CriteriaResolution, AmountDeriver { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor( address conduitController ) BasicOrderFulfiller(conduitController) {} /** * @dev Internal function to validate an order and update its status, adjust * prices based on current time, apply criteria resolvers, determine * what portion to fill, and transfer relevant tokens. * * @param advancedOrder The order to fulfill as well as the fraction * to fill. Note that all offer and consideration * components must divide with no remainder for * the partial fill to be valid. * @param criteriaResolvers An array where each element contains a * reference to a specific offer or * consideration, a token identifier, and a proof * that the supplied token identifier is * contained in the order's merkle root. Note * that a criteria of zero indicates that any * (transferable) token identifier is valid and * that no proof needs to be supplied. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * @param recipient The intended recipient for all received items. * * @return A boolean indicating whether the order has been fulfilled. */ function _validateAndFulfillAdvancedOrder( AdvancedOrder memory advancedOrder, CriteriaResolver[] memory criteriaResolvers, bytes32 fulfillerConduitKey, address recipient ) internal returns (bool) { // Retrieve the order parameters and order type. OrderParameters memory orderParameters = advancedOrder.parameters; OrderType orderType = orderParameters.orderType; // Ensure this function cannot be triggered during a reentrant call. _setReentrancyGuard( // Native tokens accepted during execution for contract order types. orderType == OrderType.CONTRACT ); // Validate order, update status, and determine fraction to fill. ( bytes32 orderHash, uint256 fillNumerator, uint256 fillDenominator ) = _validateOrder(advancedOrder, _runTimeConstantTrue()); // Create an array with length 1 containing the order. AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1); // Populate the order as the first and only element of the new array. advancedOrders[0] = advancedOrder; // Apply criteria resolvers using generated orders and details arrays. _applyCriteriaResolvers(advancedOrders, criteriaResolvers); // Derive each item transfer with the appropriate fractional amount. _applyFractions( orderParameters, fillNumerator, fillDenominator, recipient ); // Declare an empty length-1 array to hold the order hash, but do not // write to it until after the order has been authorized or generated. bytes32[] memory orderHashes = new bytes32[](1); // Declare a boolean that cannot be optimized out by the compiler // outside of the if-else statement so it can be used in either. bool _true = _runTimeConstantTrue(); if (orderType != OrderType.CONTRACT) { _assertRestrictedAdvancedOrderAuthorization( advancedOrder, orderHashes, orderHash, 0 ); _updateStatus(orderHash, fillNumerator, fillDenominator, _true); } else { // Return the generated order based on the order params and the // provided extra data. orderHash = _getGeneratedOrder( orderParameters, advancedOrder.extraData, _true ); } _transferEach(orderParameters, fulfillerConduitKey, recipient); // Write the order hash to the orderHashes array. orderHashes[0] = orderHash; // Ensure restricted orders have a valid submitter or pass a zone check. _assertRestrictedAdvancedOrderValidity( advancedOrder, orderHashes, orderHash ); // Emit an event signifying that the order has been fulfilled. _emitOrderFulfilledEvent( orderHash, orderParameters.offerer, orderParameters.zone, recipient, orderParameters.offer, orderParameters.consideration ); // Clear the reentrancy guard. _clearReentrancyGuard(); return true; } /** * @dev Internal function to derive the amount to transfer for each item in * a given order based on the fraction to fill and the current time. * * @param orderParameters The parameters for the fulfilled order. * @param numerator A value indicating the portion of the order * that should be filled. * @param denominator A value indicating the total order size. * @param recipient The intended recipient for all received items. */ function _applyFractions( OrderParameters memory orderParameters, uint256 numerator, uint256 denominator, address recipient ) internal view { // Read start time & end time from order parameters and place on stack. uint256 startTime = orderParameters.startTime; uint256 endTime = orderParameters.endTime; // As of solidity 0.6.0, inline assembly cannot directly access function // definitions, but can still access locally scoped function variables. // This means that a local variable to reference the internal function // definition (using the same type), along with a local variable with // the desired type, must first be created. Then, the original function // pointer can be recast to the desired type. /** * Repurpose existing OfferItem memory regions on the offer array for * the order by overriding the _transfer function pointer to accept a * modified OfferItem argument in place of the usual ReceivedItem: * * ========= OfferItem ========== ====== ReceivedItem ====== * ItemType itemType; ------------> ItemType itemType; * address token; ----------------> address token; * uint256 identifierOrCriteria; -> uint256 identifier; * uint256 startAmount; ----------> uint256 amount; * uint256 endAmount; ------------> address recipient; */ // Declare a nested scope to minimize stack depth. unchecked { // Read offer array length from memory and place on stack. uint256 totalOfferItems = orderParameters.offer.length; // Create a variable to indicate whether the order has any // native offer items uint256 anyNativeItems; // Iterate over each offer on the order. // Skip overflow check as for loop is indexed starting at zero. for (uint256 i = 0; i < totalOfferItems; ++i) { // Retrieve the offer item. OfferItem memory offerItem = orderParameters.offer[i]; // Offer items for the native token can not be received outside // of a match order function except as part of a contract order. { ItemType itemType = offerItem.itemType; assembly { anyNativeItems := or(anyNativeItems, iszero(itemType)) } } // Declare an additional nested scope to minimize stack depth. { // Apply fill fraction to get offer item amount to transfer. uint256 amount = _applyFraction( offerItem.startAmount, offerItem.endAmount, numerator, denominator, startTime, endTime, _runTimeConstantFalse() ); // Utilize assembly to set overloaded offerItem arguments. assembly { // Write new fractional amount to startAmount as amount. mstore( add(offerItem, ReceivedItem_amount_offset), amount ) // Write recipient to endAmount. mstore( add(offerItem, ReceivedItem_recipient_offset), recipient ) } } } // If a non-contract order has native offer items, throw with an // `InvalidNativeOfferItem` custom error. { OrderType orderType = orderParameters.orderType; uint256 invalidNativeOfferItem; assembly { invalidNativeOfferItem := and( // Note that this check requires that there are no // order types beyond the current set (0-4). It will // need to be modified when adding more order types. lt(orderType, 4), anyNativeItems ) } if (invalidNativeOfferItem != 0) { _revertInvalidNativeOfferItem(); } } } /** * Repurpose existing ConsiderationItem memory regions on the * consideration array for the order by overriding the _transfer * function pointer to accept a modified ConsiderationItem argument in * place of the usual ReceivedItem: * * ====== ConsiderationItem ===== ====== ReceivedItem ====== * ItemType itemType; ------------> ItemType itemType; * address token; ----------------> address token; * uint256 identifierOrCriteria;--> uint256 identifier; * uint256 startAmount; ----------> uint256 amount; * uint256 endAmount; /----> address recipient; * address recipient; ------/ */ // Declare a nested scope to minimize stack depth. unchecked { // Read consideration array length from memory and place on stack. uint256 totalConsiderationItems = orderParameters .consideration .length; // Iterate over each consideration item on the order. // Skip overflow check as for loop is indexed starting at zero. for (uint256 i = 0; i < totalConsiderationItems; ++i) { // Retrieve the consideration item. ConsiderationItem memory considerationItem = ( orderParameters.consideration[i] ); // Apply fraction & derive considerationItem amount to transfer. uint256 amount = _applyFraction( considerationItem.startAmount, considerationItem.endAmount, numerator, denominator, startTime, endTime, _runTimeConstantTrue() ); // Use assembly to set overloaded considerationItem arguments. assembly { // Write derived fractional amount to startAmount as amount. mstore( add(considerationItem, ReceivedItem_amount_offset), amount ) // Write original recipient to endAmount as recipient. mstore( add(considerationItem, ReceivedItem_recipient_offset), mload( add( considerationItem, ConsiderationItem_recipient_offset ) ) ) } } } } /** * @dev Internal function to transfer each item contained in a given single * order fulfillment. * * @param orderParameters The parameters for the fulfilled order. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token approvals * from. The zero hash signifies that no conduit * should be used, with direct approvals set on * Consideration. * @param recipient The intended recipient for all received items. */ function _transferEach( OrderParameters memory orderParameters, bytes32 fulfillerConduitKey, address recipient ) internal { // Initialize an accumulator array. From this point forward, no new // memory regions can be safely allocated until the accumulator is no // longer being utilized, as the accumulator operates in an open-ended // fashion from this memory pointer; existing memory may still be // accessed and modified, however. bytes memory accumulator = new bytes(AccumulatorDisarmed); // As of solidity 0.6.0, inline assembly cannot directly access function // definitions, but can still access locally scoped function variables. // This means that a local variable to reference the internal function // definition (using the same type), along with a local variable with // the desired type, must first be created. Then, the original function // pointer can be recast to the desired type. /** * Repurpose existing OfferItem memory regions on the offer array for * the order by overriding the _transfer function pointer to accept a * modified OfferItem argument in place of the usual ReceivedItem: * * ========= OfferItem ========== ====== ReceivedItem ====== * ItemType itemType; ------------> ItemType itemType; * address token; ----------------> address token; * uint256 identifierOrCriteria; -> uint256 identifier; * uint256 startAmount; ----------> uint256 amount; * uint256 endAmount; ------------> address recipient; */ // Declare a nested scope to minimize stack depth. unchecked { // Read offer array length from memory and place on stack. uint256 totalOfferItems = orderParameters.offer.length; // Iterate over each offer on the order. // Skip overflow check as for loop is indexed starting at zero. for (uint256 i = 0; i < totalOfferItems; ++i) { // Retrieve the offer item. OfferItem memory offerItem = orderParameters.offer[i]; // Utilize assembly to set overloaded offerItem arguments. assembly { // Write recipient to endAmount. mstore( add(offerItem, ReceivedItem_recipient_offset), recipient ) } // Transfer the item from the offerer to the recipient. _toOfferItemInput(_transfer)( offerItem, orderParameters.offerer, orderParameters.conduitKey, accumulator ); } } // Declare a variable for the available native token balance. uint256 nativeTokenBalance; /** * Repurpose existing ConsiderationItem memory regions on the * consideration array for the order by overriding the _transfer * function pointer to accept a modified ConsiderationItem argument in * place of the usual ReceivedItem: * * ====== ConsiderationItem ===== ====== ReceivedItem ====== * ItemType itemType; ------------> ItemType itemType; * address token; ----------------> address token; * uint256 identifierOrCriteria;--> uint256 identifier; * uint256 startAmount; ----------> uint256 amount; * uint256 endAmount; /----> address recipient; * address recipient; ------/ */ // Declare a nested scope to minimize stack depth. unchecked { // Read consideration array length from memory and place on stack. uint256 totalConsiderationItems = orderParameters .consideration .length; // Iterate over each consideration item on the order. // Skip overflow check as for loop is indexed starting at zero. for (uint256 i = 0; i < totalConsiderationItems; ++i) { // Retrieve the consideration item. ConsiderationItem memory considerationItem = ( orderParameters.consideration[i] ); if (considerationItem.itemType == ItemType.NATIVE) { // Get the current available balance of native tokens. assembly { nativeTokenBalance := selfbalance() } // Ensure that sufficient native tokens are still available. if (considerationItem.startAmount > nativeTokenBalance) { _revertInsufficientNativeTokensSupplied(); } } // Transfer item from caller to recipient specified by the item. _toConsiderationItemInput(_transfer)( considerationItem, msg.sender, fulfillerConduitKey, accumulator ); } } // Trigger any remaining accumulated transfers via call to the conduit. _triggerIfArmed(accumulator); // Determine whether any native token balance remains. assembly { nativeTokenBalance := selfbalance() } // Return any remaining native token balance to the caller. if (nativeTokenBalance != 0) { _transferNativeTokens(payable(msg.sender), nativeTokenBalance); } } /** * @dev Internal function to emit an OrderFulfilled event. OfferItems are * translated into SpentItems and ConsiderationItems are translated * into ReceivedItems. * * @param orderHash The order hash. * @param offerer The offerer for the order. * @param zone The zone for the order. * @param recipient The recipient of the order, or the null address if * the order was fulfilled via order matching. * @param offer The offer items for the order. * @param consideration The consideration items for the order. */ function _emitOrderFulfilledEvent( bytes32 orderHash, address offerer, address zone, address recipient, OfferItem[] memory offer, ConsiderationItem[] memory consideration ) internal { // Cast already-modified offer memory region as spent items. SpentItem[] memory spentItems; assembly { spentItems := offer } // Cast already-modified consideration memory region as received items. ReceivedItem[] memory receivedItems; assembly { receivedItems := consideration } // Emit an event signifying that the order has been fulfilled. emit OrderFulfilled( orderHash, offerer, zone, recipient, spentItems, receivedItems ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ItemType, Side } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { AdvancedOrder, Execution, FulfillmentComponent, ReceivedItem } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { _revertMissingFulfillmentComponentOnAggregation } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { FulfillmentApplicationErrors } from "seaport-types/src/interfaces/FulfillmentApplicationErrors.sol"; import { AdvancedOrder_numerator_offset, Common_amount_offset, Common_identifier_offset, Common_token_offset, Execution_conduit_offset, Execution_offerer_offset, Fulfillment_itemIndex_offset, OneWord, OneWordShift, OrderParameters_conduit_offset, OrderParameters_consideration_head_offset, OrderParameters_offer_head_offset, ReceivedItem_CommonParams_size, ReceivedItem_recipient_offset, ReceivedItem_size } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { Error_selector_offset, InvalidFulfillmentComponentData_error_length, InvalidFulfillmentComponentData_error_selector, MismatchedOfferAndConsiderationComponents_error_idx_ptr, MismatchedOfferAndConsiderationComponents_error_length, MismatchedOfferAndConsiderationComponents_error_selector, MissingItemAmount_error_length, MissingItemAmount_error_selector, OfferAndConsiderationRequiredOnFulfillment_error_length, OfferAndConsiderationRequiredOnFulfillment_error_selector, Panic_arithmetic, Panic_error_code_ptr, Panic_error_length, Panic_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; /** * @title FulfillmentApplier * @author 0age * @notice FulfillmentApplier contains logic related to applying fulfillments, * both as part of order matching (where offer items are matched to * consideration items) as well as fulfilling available orders (where * order items and consideration items are independently aggregated). */ contract FulfillmentApplier is FulfillmentApplicationErrors { /** * @dev Internal pure function to match offer items to consideration items * on a group of orders via a supplied fulfillment. * * @param advancedOrders The orders to match. * @param offerComponents An array designating offer components to * match to consideration components. * @param considerationComponents An array designating consideration * components to match to offer components. * Note that each consideration amount must * be zero in order for the match operation * to be valid. * @param fulfillmentIndex The index of the fulfillment being * applied. * * @return execution The transfer performed as a result of the fulfillment. */ function _applyFulfillment( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[] memory offerComponents, FulfillmentComponent[] memory considerationComponents, uint256 fulfillmentIndex ) internal pure returns (Execution memory execution) { // Ensure 1+ of both offer and consideration components are supplied. assembly { if or( iszero(mload(offerComponents)), iszero(mload(considerationComponents)) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore( 0, OfferAndConsiderationRequiredOnFulfillment_error_selector ) // revert(abi.encodeWithSignature( // "OfferAndConsiderationRequiredOnFulfillment()" // )) revert( Error_selector_offset, OfferAndConsiderationRequiredOnFulfillment_error_length ) } } // Declare a new Execution struct. Execution memory considerationExecution; // Validate & aggregate consideration items to new Execution object. _aggregateValidFulfillmentConsiderationItems( advancedOrders, considerationComponents, considerationExecution, address(0), bytes32(0) ); // Retrieve the consideration item from the execution struct. ReceivedItem memory considerationItem = considerationExecution.item; // Skip aggregating offer items if no consideration items are available. if (considerationItem.amount == 0) { return considerationExecution; } // Validate & aggregate offer items to Execution object. _aggregateValidFulfillmentOfferItems( advancedOrders, offerComponents, execution, considerationItem.recipient ); ReceivedItem memory executionItem = execution.item; // Ensure offer & consideration item types, tokens, & identifiers match. // (a != b || c != d || e != f) == (((a ^ b) | (c ^ d) | (e ^ f)) != 0), // but the second expression requires less gas to evaluate. assembly { if or( or( xor( mload(executionItem), // no offset for item type mload(considerationItem) // no offset for item type ), xor( mload(add(executionItem, Common_token_offset)), mload(add(considerationItem, Common_token_offset)) ) ), xor( mload(add(executionItem, Common_identifier_offset)), mload(add(considerationItem, Common_identifier_offset)) ) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore( 0, MismatchedOfferAndConsiderationComponents_error_selector ) // Store fulfillment index argument. mstore( MismatchedOfferAndConsiderationComponents_error_idx_ptr, fulfillmentIndex ) // Revert: `MismatchedOfferAndConsiderationComponents(uint256)` revert( Error_selector_offset, MismatchedOfferAndConsiderationComponents_error_length ) } } // If total consideration amount exceeds the offer amount... if (considerationItem.amount > executionItem.amount) { // Retrieve the first consideration component from the fulfillment. FulfillmentComponent memory targetComponent = ( considerationComponents[0] ); // Skip underflow check as the conditional being true implies that // considerationItem.amount > execution.item.amount. unchecked { // Add excess consideration item amount to original order array. advancedOrders[targetComponent.orderIndex] .parameters .consideration[targetComponent.itemIndex] .startAmount = (considerationItem.amount - executionItem.amount); } } else { // Retrieve the first offer component from the fulfillment. FulfillmentComponent memory targetComponent = offerComponents[0]; // Skip underflow check as the conditional being false implies that // execution.item.amount >= considerationItem.amount. unchecked { // Add excess offer item amount to the original array of orders. advancedOrders[targetComponent.orderIndex] .parameters .offer[targetComponent.itemIndex] .startAmount = (executionItem.amount - considerationItem.amount); } // Reduce total offer amount to equal the consideration amount. executionItem.amount = considerationItem.amount; } // Return the final execution that will be triggered for relevant items. return execution; // Execution(executionItem, offerer, conduitKey); } /** * @dev Internal view function to aggregate offer or consideration items * from a group of orders into a single execution via a supplied array * of fulfillment components. Items that are not available to aggregate * will not be included in the aggregated execution. * * @param advancedOrders The orders to aggregate. * @param side The side (i.e. offer or consideration). * @param fulfillmentComponents An array designating item components to * aggregate if part of an available order. * @param fulfillerConduitKey A bytes32 value indicating what conduit, if * any, to source the fulfiller's token * approvals from. The zero hash signifies that * no conduit should be used, with approvals * set directly on this contract. * @param recipient The intended recipient for all received * items. * * @return execution The transfer performed as a result of the fulfillment. */ function _aggregateAvailable( AdvancedOrder[] memory advancedOrders, Side side, FulfillmentComponent[] memory fulfillmentComponents, bytes32 fulfillerConduitKey, address recipient ) internal view returns (Execution memory execution) { // Skip overflow / underflow checks; conditions checked or unreachable. unchecked { // Retrieve fulfillment components array length and place on stack. // Ensure at least one fulfillment component has been supplied. if (fulfillmentComponents.length == 0) { _revertMissingFulfillmentComponentOnAggregation(side); } // If the fulfillment components are offer components... if (side == Side.OFFER) { // Return execution for aggregated items provided by offerer. _aggregateValidFulfillmentOfferItems( advancedOrders, fulfillmentComponents, execution, payable(recipient) ); } else { // Otherwise, fulfillment components are consideration // components. Return execution for aggregated items provided by // the fulfiller. _aggregateValidFulfillmentConsiderationItems( advancedOrders, fulfillmentComponents, execution, msg.sender, fulfillerConduitKey ); } } } /** * @dev Internal pure function to aggregate a group of offer items using * supplied directives on which component items are candidates for * aggregation, skipping items on orders that are not available. * * @param advancedOrders The orders to aggregate offer items from. * @param offerComponents An array of FulfillmentComponent structs * indicating the order index and item index of each * candidate offer item for aggregation. * @param execution The execution to apply the aggregation to. * @param recipient The intended recipient for the received item. */ function _aggregateValidFulfillmentOfferItems( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[] memory offerComponents, Execution memory execution, address payable recipient ) internal pure { assembly { // Declare a variable for the final aggregated item amount. let amount // Declare a variable to track errors encountered with amount. let errorBuffer // Declare a variable for the hash of itemType, token, & identifier. let dataHash // Iterate over each offer component. for { // Create variable to track position in offerComponents head. let fulfillmentHeadPtr := offerComponents // Get position of the last element in head of array. let endPtr := add( offerComponents, shl(OneWordShift, mload(offerComponents)) ) } lt(fulfillmentHeadPtr, endPtr) { } { // Increment position in considerationComponents head. fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord) // Ensure that the order index is not out of range. if iszero( lt(mload(mload(fulfillmentHeadPtr)), mload(advancedOrders)) ) { throwInvalidFulfillmentComponentData() } // Read advancedOrders[orderIndex] pointer from its array head. let orderPtr := mload( // Calculate head position of advancedOrders[orderIndex] add( add(advancedOrders, OneWord), shl(OneWordShift, mload(mload(fulfillmentHeadPtr))) ) ) // Read the pointer to OrderParameters from the AdvancedOrder. let paramsPtr := mload(orderPtr) // Retrieve item index using an offset of fulfillment pointer. let itemIndex := mload( add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset) ) let offerItemPtr { // Load the offer array pointer. let offerArrPtr := mload( add(paramsPtr, OrderParameters_offer_head_offset) ) // If the offer item index is out of range or the numerator // is zero, skip this item. if or( iszero(lt(itemIndex, mload(offerArrPtr))), iszero( mload(add(orderPtr, AdvancedOrder_numerator_offset)) ) ) { continue } // Retrieve offer item pointer using the item index. offerItemPtr := mload( add( // Get pointer to beginning of receivedItem. add(offerArrPtr, OneWord), // Calculate offset to pointer for the order. shl(OneWordShift, itemIndex) ) ) } // Declare a separate scope for the amount update. { // Retrieve amount pointer using consideration item pointer. let amountPtr := add(offerItemPtr, Common_amount_offset) // Add offer item amount to execution amount. let newAmount := add(amount, mload(amountPtr)) // Update error buffer: // 1 = zero amount, 2 = overflow, 3 = both. errorBuffer := or( errorBuffer, or( shl(1, lt(newAmount, amount)), iszero(mload(amountPtr)) ) ) // Update the amount to the new, summed amount. amount := newAmount // Zero out amount on original item to indicate it is spent. mstore(amountPtr, 0) } // Retrieve ReceivedItem pointer from Execution. let receivedItem := mload(execution) // Check if this is the first valid fulfillment item. switch iszero(dataHash) case 1 { // On first valid item, populate the received item in memory // for later comparison. // Set the item type on the received item. mstore(receivedItem, mload(offerItemPtr)) // Set the token on the received item. mstore( add(receivedItem, Common_token_offset), mload(add(offerItemPtr, Common_token_offset)) ) // Set the identifier on the received item. mstore( add(receivedItem, Common_identifier_offset), mload(add(offerItemPtr, Common_identifier_offset)) ) // Set the recipient on the received item. mstore( add(receivedItem, ReceivedItem_recipient_offset), recipient ) // Set offerer on returned execution using order pointer. mstore( add(execution, Execution_offerer_offset), mload(paramsPtr) ) // Set execution conduitKey via order pointer offset. mstore( add(execution, Execution_conduit_offset), mload(add(paramsPtr, OrderParameters_conduit_offset)) ) // Calculate the hash of (itemType, token, identifier). dataHash := keccak256( receivedItem, ReceivedItem_CommonParams_size ) // If component index > 0, swap component pointer with // pointer to first component so that any remainder after // fulfillment can be added back to the first item. let firstFulfillmentHeadPtr := add(offerComponents, OneWord) if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) { let fulfillmentPtr := mload(fulfillmentHeadPtr) mstore(firstFulfillmentHeadPtr, fulfillmentPtr) } } default { // Compare every subsequent item to the first. if or( or( // The offerer must match on both items. xor( mload(paramsPtr), mload(add(execution, Execution_offerer_offset)) ), // The conduit key must match on both items. xor( mload( add( paramsPtr, OrderParameters_conduit_offset ) ), mload(add(execution, Execution_conduit_offset)) ) ), // The itemType, token, and identifier must match. xor( dataHash, keccak256( offerItemPtr, ReceivedItem_CommonParams_size ) ) ) { // Throw if any of the requirements are not met. throwInvalidFulfillmentComponentData() } } } // Write final amount to execution. mstore(add(mload(execution), Common_amount_offset), amount) // Determine whether the error buffer contains a nonzero error code. if errorBuffer { // If errorBuffer is 1, an item had an amount of zero. if eq(errorBuffer, 1) { // Store left-padded selector with push4 (reduces bytecode) // mem[28:32] = selector mstore(0, MissingItemAmount_error_selector) // revert(abi.encodeWithSignature("MissingItemAmount()")) revert( Error_selector_offset, MissingItemAmount_error_length ) } // If errorBuffer is not 1 or 0, the sum overflowed. // Panic! throwOverflow() } // Declare function for reverts on invalid fulfillment data. function throwInvalidFulfillmentComponentData() { // Store left-padded selector (uses push4 and reduces code size) mstore(0, InvalidFulfillmentComponentData_error_selector) // revert(abi.encodeWithSignature( // "InvalidFulfillmentComponentData()" // )) revert( Error_selector_offset, InvalidFulfillmentComponentData_error_length ) } // Declare function for reverts due to arithmetic overflows. function throwOverflow() { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature("Panic(uint256)", 0x11)) revert(Error_selector_offset, Panic_error_length) } } } /** * @dev Internal pure function to aggregate a group of consideration items * using supplied directives on which component items are candidates * for aggregation, skipping items on orders that are not available. * Note that this function depends on memory layout affected by an * earlier call to _validateOrdersAndPrepareToFulfill. The memory for * the consideration arrays needs to be updated before calling * _aggregateValidFulfillmentConsiderationItems. * _validateOrdersAndPrepareToFulfill is called in _matchAdvancedOrders * and _fulfillAvailableAdvancedOrders in the current version. * * @param advancedOrders The orders to aggregate consideration * items from. * @param considerationComponents An array of FulfillmentComponent structs * indicating the order index and item index * of each candidate consideration item for * aggregation. * @param execution The execution to apply the aggregation to. * @param offerer The address of the offerer to set on the * execution. * @param conduitKey A bytes32 value indicating the conduit key * to set on the execution. */ function _aggregateValidFulfillmentConsiderationItems( AdvancedOrder[] memory advancedOrders, FulfillmentComponent[] memory considerationComponents, Execution memory execution, address offerer, bytes32 conduitKey ) internal pure { // Utilize assembly in order to efficiently aggregate the items. assembly { // Declare a variable for the final aggregated item amount. let amount // Create variable to track errors encountered with amount. let errorBuffer // Declare variable for hash(itemType, token, identifier, recipient) let dataHash // Iterate over each consideration component. for { // Track position in considerationComponents head. let fulfillmentHeadPtr := considerationComponents // Get position of the last element in head of array. let endPtr := add( considerationComponents, shl(OneWordShift, mload(considerationComponents)) ) } lt(fulfillmentHeadPtr, endPtr) { } { // Increment position in considerationComponents head. fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord) // Retrieve the order index using the fulfillment pointer. let orderIndex := mload(mload(fulfillmentHeadPtr)) // Ensure that the order index is not out of range. if iszero(lt(orderIndex, mload(advancedOrders))) { throwInvalidFulfillmentComponentData() } // Read advancedOrders[orderIndex] pointer from its array head. let orderPtr := mload( // Derive head position of advancedOrders[orderIndex]. add( add(advancedOrders, OneWord), shl(OneWordShift, orderIndex) ) ) // Retrieve item index using an offset of fulfillment pointer. let itemIndex := mload( add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset) ) let considerationItemPtr { // Load consideration array pointer. let considerationArrPtr := mload( add( // Read OrderParameters pointer from the order. mload(orderPtr), OrderParameters_consideration_head_offset ) ) // If the consideration item index is out of range or the // numerator is zero, skip this item. if or( iszero(lt(itemIndex, mload(considerationArrPtr))), iszero( mload(add(orderPtr, AdvancedOrder_numerator_offset)) ) ) { continue } // Retrieve consideration item pointer using the item index. considerationItemPtr := mload( add( // Get pointer to beginning of receivedItem. add(considerationArrPtr, OneWord), // Calculate offset to pointer for the order. shl(OneWordShift, itemIndex) ) ) } // Declare a separate scope for the amount update. { // Retrieve amount pointer using consideration item pointer. let amountPtr := add( considerationItemPtr, Common_amount_offset ) // Add consideration item amount to execution amount. let newAmount := add(amount, mload(amountPtr)) // Update error buffer: // 1 = zero amount, 2 = overflow, 3 = both. errorBuffer := or( errorBuffer, or( shl(1, lt(newAmount, amount)), iszero(mload(amountPtr)) ) ) // Update the amount to the new, summed amount. amount := newAmount // Zero out original item amount to indicate it is credited. mstore(amountPtr, 0) } // Retrieve ReceivedItem pointer from Execution. let receivedItem := mload(execution) switch iszero(dataHash) case 1 { // On first valid item, populate the received item in // memory for later comparison. // Set the item type on the received item. mstore(receivedItem, mload(considerationItemPtr)) // Set the token on the received item. mstore( add(receivedItem, Common_token_offset), mload(add(considerationItemPtr, Common_token_offset)) ) // Set the identifier on the received item. mstore( add(receivedItem, Common_identifier_offset), mload( add(considerationItemPtr, Common_identifier_offset) ) ) // Set the recipient on the received item. Note that this // depends on the memory layout established by the // _validateOrdersAndPrepareToFulfill function. mstore( add(receivedItem, ReceivedItem_recipient_offset), mload( add( considerationItemPtr, ReceivedItem_recipient_offset ) ) ) // Set provided offerer on the execution. mstore(add(execution, Execution_offerer_offset), offerer) // Set provided conduitKey on the execution. mstore(add(execution, Execution_conduit_offset), conduitKey) // Calculate the hash of (itemType, token, identifier, // recipient). This is run after amount is set to zero, so // there will be one blank word after identifier included in // the hash buffer. dataHash := keccak256( considerationItemPtr, ReceivedItem_size ) // If component index > 0, swap component pointer with // pointer to first component so that any remainder after // fulfillment can be added back to the first item. let firstFulfillmentHeadPtr := add( considerationComponents, OneWord ) if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) { let fulfillmentPtr := mload(fulfillmentHeadPtr) mstore(firstFulfillmentHeadPtr, fulfillmentPtr) } } default { // Compare every subsequent item to the first; the item // type, token, identifier and recipient must match. if xor( dataHash, // Calculate the hash of (itemType, token, identifier, // recipient). This is run after amount is set to zero, // so there will be one blank word after identifier // included in the hash buffer. keccak256(considerationItemPtr, ReceivedItem_size) ) { // Throw if any of the requirements are not met. throwInvalidFulfillmentComponentData() } } } // Retrieve ReceivedItem pointer from Execution. let receivedItem := mload(execution) // Write final amount to execution. mstore(add(receivedItem, Common_amount_offset), amount) // Determine whether the error buffer contains a nonzero error code. if errorBuffer { // If errorBuffer is 1, an item had an amount of zero. if eq(errorBuffer, 1) { // Store left-padded selector with push4, mem[28:32] mstore(0, MissingItemAmount_error_selector) // revert(abi.encodeWithSignature("MissingItemAmount()")) revert( Error_selector_offset, MissingItemAmount_error_length ) } // If errorBuffer is not 1 or 0, `amount` overflowed. // Panic! throwOverflow() } // Declare function for reverts on invalid fulfillment data. function throwInvalidFulfillmentComponentData() { // Store the InvalidFulfillmentComponentData error signature. mstore(0, InvalidFulfillmentComponentData_error_selector) // revert(abi.encodeWithSignature( // "InvalidFulfillmentComponentData()" // )) revert( Error_selector_offset, InvalidFulfillmentComponentData_error_length ) } // Declare function for reverts due to arithmetic overflows. function throwOverflow() { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature("Panic(uint256)", 0x11)) revert(Error_selector_offset, Panic_error_length) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.17; import { Side } from "./ConsiderationEnums.sol"; import { BadFraction_error_length, BadFraction_error_selector, CannotCancelOrder_error_length, CannotCancelOrder_error_selector, ConsiderationLengthNotEqualToTotalOriginal_error_length, ConsiderationLengthNotEqualToTotalOriginal_error_selector, ConsiderationNotMet_error_considerationIndex_ptr, ConsiderationNotMet_error_length, ConsiderationNotMet_error_orderIndex_ptr, ConsiderationNotMet_error_selector, ConsiderationNotMet_error_shortfallAmount_ptr, CriteriaNotEnabledForItem_error_length, CriteriaNotEnabledForItem_error_selector, Error_selector_offset, InsufficientNativeTokensSupplied_error_length, InsufficientNativeTokensSupplied_error_selector, InvalidBasicOrderParameterEncoding_error_length, InvalidBasicOrderParameterEncoding_error_selector, InvalidCallToConduit_error_conduit_ptr, InvalidCallToConduit_error_length, InvalidCallToConduit_error_selector, InvalidConduit_error_conduit_ptr, InvalidConduit_error_conduitKey_ptr, InvalidConduit_error_length, InvalidConduit_error_selector, InvalidContractOrder_error_length, InvalidContractOrder_error_orderHash_ptr, InvalidContractOrder_error_selector, InvalidERC721TransferAmount_error_amount_ptr, InvalidERC721TransferAmount_error_length, InvalidERC721TransferAmount_error_selector, InvalidMsgValue_error_length, InvalidMsgValue_error_selector, InvalidMsgValue_error_value_ptr, InvalidNativeOfferItem_error_length, InvalidNativeOfferItem_error_selector, InvalidProof_error_length, InvalidProof_error_selector, InvalidTime_error_endTime_ptr, InvalidTime_error_length, InvalidTime_error_selector, InvalidTime_error_startTime_ptr, MismatchedOfferAndConsiderationComponents_error_idx_ptr, MismatchedOfferAndConsiderationComponents_error_length, MismatchedOfferAndConsiderationComponents_error_selector, MissingFulfillmentComponentOnAggregation_error_length, MissingFulfillmentComponentOnAggregation_error_selector, MissingFulfillmentComponentOnAggregation_error_side_ptr, MissingOriginalConsiderationItems_error_length, MissingOriginalConsiderationItems_error_selector, NoReentrantCalls_error_length, NoReentrantCalls_error_selector, NoSpecifiedOrdersAvailable_error_length, NoSpecifiedOrdersAvailable_error_selector, OfferAndConsiderationRequiredOnFulfillment_error_length, OfferAndConsiderationRequiredOnFulfillment_error_selector, OrderAlreadyFilled_error_length, OrderAlreadyFilled_error_orderHash_ptr, OrderAlreadyFilled_error_selector, OrderCriteriaResolverOutOfRange_error_length, OrderCriteriaResolverOutOfRange_error_selector, OrderCriteriaResolverOutOfRange_error_side_ptr, OrderIsCancelled_error_length, OrderIsCancelled_error_orderHash_ptr, OrderIsCancelled_error_selector, OrderPartiallyFilled_error_length, OrderPartiallyFilled_error_orderHash_ptr, OrderPartiallyFilled_error_selector, PartialFillsNotEnabledForOrder_error_length, PartialFillsNotEnabledForOrder_error_selector, UnresolvedConsiderationCriteria_error_length, UnresolvedConsiderationCriteria_error_orderIndex_ptr, UnresolvedConsiderationCriteria_error_selector, UnresolvedOfferCriteria_error_length, UnresolvedOfferCriteria_error_offerIndex_ptr, UnresolvedOfferCriteria_error_orderIndex_ptr, UnresolvedOfferCriteria_error_selector, UnusedItemParameters_error_length, UnusedItemParameters_error_selector } from "./ConsiderationErrorConstants.sol"; /** * @dev Reverts the current transaction with a "BadFraction" error message. */ function _revertBadFraction() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, BadFraction_error_selector) // revert(abi.encodeWithSignature("BadFraction()")) revert(Error_selector_offset, BadFraction_error_length) } } /** * @dev Reverts the current transaction with a "ConsiderationNotMet" error * message, including the provided order index, consideration index, and * shortfall amount. * * @param orderIndex The index of the order that did not meet the * consideration criteria. * @param considerationIndex The index of the consideration item that did not * meet its criteria. * @param shortfallAmount The amount by which the consideration criteria were * not met. */ function _revertConsiderationNotMet( uint256 orderIndex, uint256 considerationIndex, uint256 shortfallAmount ) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, ConsiderationNotMet_error_selector) // Store arguments. mstore(ConsiderationNotMet_error_orderIndex_ptr, orderIndex) mstore( ConsiderationNotMet_error_considerationIndex_ptr, considerationIndex ) mstore(ConsiderationNotMet_error_shortfallAmount_ptr, shortfallAmount) // revert(abi.encodeWithSignature( // "ConsiderationNotMet(uint256,uint256,uint256)", // orderIndex, // considerationIndex, // shortfallAmount // )) revert(Error_selector_offset, ConsiderationNotMet_error_length) } } /** * @dev Reverts the current transaction with a "CriteriaNotEnabledForItem" error * message. */ function _revertCriteriaNotEnabledForItem() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, CriteriaNotEnabledForItem_error_selector) // revert(abi.encodeWithSignature("CriteriaNotEnabledForItem()")) revert(Error_selector_offset, CriteriaNotEnabledForItem_error_length) } } /** * @dev Reverts the current transaction with an * "InsufficientNativeTokensSupplied" error message. */ function _revertInsufficientNativeTokensSupplied() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InsufficientNativeTokensSupplied_error_selector) // revert(abi.encodeWithSignature("InsufficientNativeTokensSupplied()")) revert( Error_selector_offset, InsufficientNativeTokensSupplied_error_length ) } } /** * @dev Reverts the current transaction with an * "InvalidBasicOrderParameterEncoding" error message. */ function _revertInvalidBasicOrderParameterEncoding() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidBasicOrderParameterEncoding_error_selector) // revert(abi.encodeWithSignature( // "InvalidBasicOrderParameterEncoding()" // )) revert( Error_selector_offset, InvalidBasicOrderParameterEncoding_error_length ) } } /** * @dev Reverts the current transaction with an "InvalidCallToConduit" error * message, including the provided address of the conduit that was called * improperly. * * @param conduit The address of the conduit that was called improperly. */ function _revertInvalidCallToConduit(address conduit) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidCallToConduit_error_selector) // Store argument. mstore(InvalidCallToConduit_error_conduit_ptr, conduit) // revert(abi.encodeWithSignature( // "InvalidCallToConduit(address)", // conduit // )) revert(Error_selector_offset, InvalidCallToConduit_error_length) } } /** * @dev Reverts the current transaction with an "CannotCancelOrder" error * message. */ function _revertCannotCancelOrder() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, CannotCancelOrder_error_selector) // revert(abi.encodeWithSignature("CannotCancelOrder()")) revert(Error_selector_offset, CannotCancelOrder_error_length) } } /** * @dev Reverts the current transaction with an "InvalidConduit" error message, * including the provided key and address of the invalid conduit. * * @param conduitKey The key of the invalid conduit. * @param conduit The address of the invalid conduit. */ function _revertInvalidConduit(bytes32 conduitKey, address conduit) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidConduit_error_selector) // Store arguments. mstore(InvalidConduit_error_conduitKey_ptr, conduitKey) mstore(InvalidConduit_error_conduit_ptr, conduit) // revert(abi.encodeWithSignature( // "InvalidConduit(bytes32,address)", // conduitKey, // conduit // )) revert(Error_selector_offset, InvalidConduit_error_length) } } /** * @dev Reverts the current transaction with an "InvalidERC721TransferAmount" * error message. * * @param amount The invalid amount. */ function _revertInvalidERC721TransferAmount(uint256 amount) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidERC721TransferAmount_error_selector) // Store argument. mstore(InvalidERC721TransferAmount_error_amount_ptr, amount) // revert(abi.encodeWithSignature( // "InvalidERC721TransferAmount(uint256)", // amount // )) revert(Error_selector_offset, InvalidERC721TransferAmount_error_length) } } /** * @dev Reverts the current transaction with an "InvalidMsgValue" error message, * including the invalid value that was sent in the transaction's * `msg.value` field. * * @param value The invalid value that was sent in the transaction's `msg.value` * field. */ function _revertInvalidMsgValue(uint256 value) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidMsgValue_error_selector) // Store argument. mstore(InvalidMsgValue_error_value_ptr, value) // revert(abi.encodeWithSignature("InvalidMsgValue(uint256)", value)) revert(Error_selector_offset, InvalidMsgValue_error_length) } } /** * @dev Reverts the current transaction with an "InvalidNativeOfferItem" error * message. */ function _revertInvalidNativeOfferItem() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidNativeOfferItem_error_selector) // revert(abi.encodeWithSignature("InvalidNativeOfferItem()")) revert(Error_selector_offset, InvalidNativeOfferItem_error_length) } } /** * @dev Reverts the current transaction with an "InvalidProof" error message. */ function _revertInvalidProof() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidProof_error_selector) // revert(abi.encodeWithSignature("InvalidProof()")) revert(Error_selector_offset, InvalidProof_error_length) } } /** * @dev Reverts the current transaction with an "InvalidContractOrder" error * message. * * @param orderHash The hash of the contract order that caused the error. */ function _revertInvalidContractOrder(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidContractOrder_error_selector) // Store arguments. mstore(InvalidContractOrder_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "InvalidContractOrder(bytes32)", // orderHash // )) revert(Error_selector_offset, InvalidContractOrder_error_length) } } /** * @dev Reverts the current transaction with an "InvalidTime" error message. * * @param startTime The time at which the order becomes active. * @param endTime The time at which the order becomes inactive. */ function _revertInvalidTime(uint256 startTime, uint256 endTime) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidTime_error_selector) // Store arguments. mstore(InvalidTime_error_startTime_ptr, startTime) mstore(InvalidTime_error_endTime_ptr, endTime) // revert(abi.encodeWithSignature( // "InvalidTime(uint256,uint256)", // startTime, // endTime // )) revert(Error_selector_offset, InvalidTime_error_length) } } /** * @dev Reverts execution with a "MissingFulfillmentComponentOnAggregation" * error message. * * @param side The side of the fulfillment component that is missing (0 for * offer, 1 for consideration). * */ function _revertMissingFulfillmentComponentOnAggregation(Side side) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MissingFulfillmentComponentOnAggregation_error_selector) // Store argument. mstore(MissingFulfillmentComponentOnAggregation_error_side_ptr, side) // revert(abi.encodeWithSignature( // "MissingFulfillmentComponentOnAggregation(uint8)", // side // )) revert( Error_selector_offset, MissingFulfillmentComponentOnAggregation_error_length ) } } /** * @dev Reverts execution with a "MissingOriginalConsiderationItems" error * message. */ function _revertMissingOriginalConsiderationItems() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MissingOriginalConsiderationItems_error_selector) // revert(abi.encodeWithSignature( // "MissingOriginalConsiderationItems()" // )) revert( Error_selector_offset, MissingOriginalConsiderationItems_error_length ) } } /** * @dev Reverts execution with a "NoReentrantCalls" error message. */ function _revertNoReentrantCalls() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert(Error_selector_offset, NoReentrantCalls_error_length) } } /** * @dev Reverts execution with a "NoSpecifiedOrdersAvailable" error message. */ function _revertNoSpecifiedOrdersAvailable() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, NoSpecifiedOrdersAvailable_error_selector) // revert(abi.encodeWithSignature("NoSpecifiedOrdersAvailable()")) revert(Error_selector_offset, NoSpecifiedOrdersAvailable_error_length) } } /** * @dev Reverts execution with an "OrderAlreadyFilled" error message. * * @param orderHash The hash of the order that has already been filled. */ function _revertOrderAlreadyFilled(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderAlreadyFilled_error_selector) // Store argument. mstore(OrderAlreadyFilled_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "OrderAlreadyFilled(bytes32)", // orderHash // )) revert(Error_selector_offset, OrderAlreadyFilled_error_length) } } /** * @dev Reverts execution with an "OrderCriteriaResolverOutOfRange" error * message. * * @param side The side of the criteria that is missing (0 for offer, 1 for * consideration). * */ function _revertOrderCriteriaResolverOutOfRange(Side side) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderCriteriaResolverOutOfRange_error_selector) // Store argument. mstore(OrderCriteriaResolverOutOfRange_error_side_ptr, side) // revert(abi.encodeWithSignature( // "OrderCriteriaResolverOutOfRange(uint8)", // side // )) revert( Error_selector_offset, OrderCriteriaResolverOutOfRange_error_length ) } } /** * @dev Reverts execution with an "OrderIsCancelled" error message. * * @param orderHash The hash of the order that has already been cancelled. */ function _revertOrderIsCancelled(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderIsCancelled_error_selector) // Store argument. mstore(OrderIsCancelled_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "OrderIsCancelled(bytes32)", // orderHash // )) revert(Error_selector_offset, OrderIsCancelled_error_length) } } /** * @dev Reverts execution with an "OrderPartiallyFilled" error message. * * @param orderHash The hash of the order that has already been partially * filled. */ function _revertOrderPartiallyFilled(bytes32 orderHash) pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, OrderPartiallyFilled_error_selector) // Store argument. mstore(OrderPartiallyFilled_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSignature( // "OrderPartiallyFilled(bytes32)", // orderHash // )) revert(Error_selector_offset, OrderPartiallyFilled_error_length) } } /** * @dev Reverts execution with a "PartialFillsNotEnabledForOrder" error message. */ function _revertPartialFillsNotEnabledForOrder() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, PartialFillsNotEnabledForOrder_error_selector) // revert(abi.encodeWithSignature("PartialFillsNotEnabledForOrder()")) revert( Error_selector_offset, PartialFillsNotEnabledForOrder_error_length ) } } /** * @dev Reverts execution with an "UnusedItemParameters" error message. */ function _revertUnusedItemParameters() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, UnusedItemParameters_error_selector) // revert(abi.encodeWithSignature("UnusedItemParameters()")) revert(Error_selector_offset, UnusedItemParameters_error_length) } } /** * @dev Reverts execution with a "ConsiderationLengthNotEqualToTotalOriginal" * error message. */ function _revertConsiderationLengthNotEqualToTotalOriginal() pure { assembly { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, ConsiderationLengthNotEqualToTotalOriginal_error_selector) // revert(abi.encodeWithSignature( // "ConsiderationLengthNotEqualToTotalOriginal()" // )) revert( Error_selector_offset, ConsiderationLengthNotEqualToTotalOriginal_error_length ) } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; uint256 constant Error_selector_offset = 0x1c; /* * error MissingFulfillmentComponentOnAggregation(uint8 side) * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: side * Revert buffer is memory[0x1c:0x40] */ uint256 constant MissingFulfillmentComponentOnAggregation_error_selector = ( 0x375c24c1 ); uint256 constant MissingFulfillmentComponentOnAggregation_error_side_ptr = 0x20; uint256 constant MissingFulfillmentComponentOnAggregation_error_length = 0x24; /* * error OfferAndConsiderationRequiredOnFulfillment() * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_selector = ( 0x98e9db6e ); uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_length = 0x04; /* * error MismatchedFulfillmentOfferAndConsiderationComponents( * uint256 fulfillmentIndex * ) * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: fulfillmentIndex * Revert buffer is memory[0x1c:0x40] */ uint256 constant MismatchedOfferAndConsiderationComponents_error_selector = ( 0xbced929d ); uint256 constant MismatchedOfferAndConsiderationComponents_error_idx_ptr = 0x20; uint256 constant MismatchedOfferAndConsiderationComponents_error_length = 0x24; /* * error InvalidFulfillmentComponentData() * - Defined in FulfillmentApplicationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidFulfillmentComponentData_error_selector = 0x7fda7279; uint256 constant InvalidFulfillmentComponentData_error_length = 0x04; /* * error InexactFraction() * - Defined in AmountDerivationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InexactFraction_error_selector = 0xc63cf089; uint256 constant InexactFraction_error_length = 0x04; /* * error OrderCriteriaResolverOutOfRange(uint8 side) * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: side * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderCriteriaResolverOutOfRange_error_selector = 0x133c37c6; uint256 constant OrderCriteriaResolverOutOfRange_error_side_ptr = 0x20; uint256 constant OrderCriteriaResolverOutOfRange_error_length = 0x24; /* * error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex) * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderIndex * - 0x40: offerIndex * Revert buffer is memory[0x1c:0x60] */ uint256 constant UnresolvedOfferCriteria_error_selector = 0xd6929332; uint256 constant UnresolvedOfferCriteria_error_orderIndex_ptr = 0x20; uint256 constant UnresolvedOfferCriteria_error_offerIndex_ptr = 0x40; uint256 constant UnresolvedOfferCriteria_error_length = 0x44; /* * error UnresolvedConsiderationCriteria( * uint256 orderIndex, * uint256 considerationIndex * ) * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderIndex * - 0x40: considerationIndex * Revert buffer is memory[0x1c:0x60] */ uint256 constant UnresolvedConsiderationCriteria_error_selector = 0xa8930e9a; uint256 constant UnresolvedConsiderationCriteria_error_orderIndex_ptr = 0x20; uint256 constant UnresolvedConsiderationCriteria_error_itemIndex_ptr = 0x40; uint256 constant UnresolvedConsiderationCriteria_error_length = 0x44; /* * error OfferCriteriaResolverOutOfRange() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant OfferCriteriaResolverOutOfRange_error_selector = 0xbfb3f8ce; // uint256 constant OfferCriteriaResolverOutOfRange_error_length = 0x04; /* * error ConsiderationCriteriaResolverOutOfRange() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant ConsiderationCriteriaResolverOutOfRange_error_selector = ( 0x6088d7de ); uint256 constant ConsiderationCriteriaResolverOutOfRange_err_selector = ( 0x6088d7de ); // uint256 constant ConsiderationCriteriaResolverOutOfRange_error_length = 0x04; /* * error CriteriaNotEnabledForItem() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant CriteriaNotEnabledForItem_error_selector = 0x94eb6af6; uint256 constant CriteriaNotEnabledForItem_error_length = 0x04; /* * error InvalidProof() * - Defined in CriteriaResolutionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidProof_error_selector = 0x09bde339; uint256 constant InvalidProof_error_length = 0x04; /* * error InvalidRestrictedOrder(bytes32 orderHash) * - Defined in ZoneInteractionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidRestrictedOrder_error_selector = 0xfb5014fc; uint256 constant InvalidRestrictedOrder_error_orderHash_ptr = 0x20; uint256 constant InvalidRestrictedOrder_error_length = 0x24; /* * error InvalidContractOrder(bytes32 orderHash) * - Defined in ZoneInteractionErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidContractOrder_error_selector = 0x93979285; uint256 constant InvalidContractOrder_error_orderHash_ptr = 0x20; uint256 constant InvalidContractOrder_error_length = 0x24; /* * error BadSignatureV(uint8 v) * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: v * Revert buffer is memory[0x1c:0x40] */ uint256 constant BadSignatureV_error_selector = 0x1f003d0a; uint256 constant BadSignatureV_error_v_ptr = 0x20; uint256 constant BadSignatureV_error_length = 0x24; /* * error InvalidSigner() * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidSigner_error_selector = 0x815e1d64; uint256 constant InvalidSigner_error_length = 0x04; /* * error InvalidSignature() * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidSignature_error_selector = 0x8baa579f; uint256 constant InvalidSignature_error_length = 0x04; /* * error BadContractSignature() * - Defined in SignatureVerificationErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant BadContractSignature_error_selector = 0x4f7fb80d; uint256 constant BadContractSignature_error_length = 0x04; /* * error InvalidERC721TransferAmount(uint256 amount) * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: amount * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidERC721TransferAmount_error_selector = 0x69f95827; uint256 constant InvalidERC721TransferAmount_error_amount_ptr = 0x20; uint256 constant InvalidERC721TransferAmount_error_length = 0x24; /* * error MissingItemAmount() * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant MissingItemAmount_error_selector = 0x91b3e514; uint256 constant MissingItemAmount_error_length = 0x04; /* * error UnusedItemParameters() * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant UnusedItemParameters_error_selector = 0x6ab37ce7; uint256 constant UnusedItemParameters_error_length = 0x04; /* * error NoReentrantCalls() * - Defined in ReentrancyErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant NoReentrantCalls_error_selector = 0x7fa8a987; uint256 constant NoReentrantCalls_error_length = 0x04; /* * error OrderAlreadyFilled(bytes32 orderHash) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderAlreadyFilled_error_selector = 0x10fda3e1; uint256 constant OrderAlreadyFilled_error_orderHash_ptr = 0x20; uint256 constant OrderAlreadyFilled_error_length = 0x24; /* * error InvalidTime(uint256 startTime, uint256 endTime) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: startTime * - 0x40: endTime * Revert buffer is memory[0x1c:0x60] */ uint256 constant InvalidTime_error_selector = 0x21ccfeb7; uint256 constant InvalidTime_error_startTime_ptr = 0x20; uint256 constant InvalidTime_error_endTime_ptr = 0x40; uint256 constant InvalidTime_error_length = 0x44; /* * error InvalidConduit(bytes32 conduitKey, address conduit) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: conduitKey * - 0x40: conduit * Revert buffer is memory[0x1c:0x60] */ uint256 constant InvalidConduit_error_selector = 0x1cf99b26; uint256 constant InvalidConduit_error_conduitKey_ptr = 0x20; uint256 constant InvalidConduit_error_conduit_ptr = 0x40; uint256 constant InvalidConduit_error_length = 0x44; /* * error MissingOriginalConsiderationItems() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant MissingOriginalConsiderationItems_error_selector = 0x466aa616; uint256 constant MissingOriginalConsiderationItems_error_length = 0x04; /* * error InvalidCallToConduit(address conduit) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: conduit * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidCallToConduit_error_selector = 0xd13d53d4; uint256 constant InvalidCallToConduit_error_conduit_ptr = 0x20; uint256 constant InvalidCallToConduit_error_length = 0x24; /* * error ConsiderationNotMet( * uint256 orderIndex, * uint256 considerationIndex, * uint256 shortfallAmount * ) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderIndex * - 0x40: considerationIndex * - 0x60: shortfallAmount * Revert buffer is memory[0x1c:0x80] */ uint256 constant ConsiderationNotMet_error_selector = 0xa5f54208; uint256 constant ConsiderationNotMet_error_orderIndex_ptr = 0x20; uint256 constant ConsiderationNotMet_error_considerationIndex_ptr = 0x40; uint256 constant ConsiderationNotMet_error_shortfallAmount_ptr = 0x60; uint256 constant ConsiderationNotMet_error_length = 0x64; /* * error InsufficientNativeTokensSupplied() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InsufficientNativeTokensSupplied_error_selector = 0x8ffff980; uint256 constant InsufficientNativeTokensSupplied_error_length = 0x04; /* * error NativeTokenTransferGenericFailure(address account, uint256 amount) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: account * - 0x40: amount * Revert buffer is memory[0x1c:0x60] */ uint256 constant NativeTokenTransferGenericFailure_error_selector = 0xbc806b96; uint256 constant NativeTokenTransferGenericFailure_error_account_ptr = 0x20; uint256 constant NativeTokenTransferGenericFailure_error_amount_ptr = 0x40; uint256 constant NativeTokenTransferGenericFailure_error_length = 0x44; /* * error PartialFillsNotEnabledForOrder() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant PartialFillsNotEnabledForOrder_error_selector = 0xa11b63ff; uint256 constant PartialFillsNotEnabledForOrder_error_length = 0x04; /* * error OrderIsCancelled(bytes32 orderHash) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderIsCancelled_error_selector = 0x1a515574; uint256 constant OrderIsCancelled_error_orderHash_ptr = 0x20; uint256 constant OrderIsCancelled_error_length = 0x24; /* * error OrderPartiallyFilled(bytes32 orderHash) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: orderHash * Revert buffer is memory[0x1c:0x40] */ uint256 constant OrderPartiallyFilled_error_selector = 0xee9e0e63; uint256 constant OrderPartiallyFilled_error_orderHash_ptr = 0x20; uint256 constant OrderPartiallyFilled_error_length = 0x24; /* * error CannotCancelOrder() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant CannotCancelOrder_error_selector = 0xfed398fc; uint256 constant CannotCancelOrder_error_length = 0x04; /* * error BadFraction() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant BadFraction_error_selector = 0x5a052b32; uint256 constant BadFraction_error_length = 0x04; /* * error InvalidMsgValue(uint256 value) * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: value * Revert buffer is memory[0x1c:0x40] */ uint256 constant InvalidMsgValue_error_selector = 0xa61be9f0; uint256 constant InvalidMsgValue_error_value_ptr = 0x20; uint256 constant InvalidMsgValue_error_length = 0x24; /* * error InvalidBasicOrderParameterEncoding() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidBasicOrderParameterEncoding_error_selector = 0x39f3e3fd; uint256 constant InvalidBasicOrderParameterEncoding_error_length = 0x04; /* * error NoSpecifiedOrdersAvailable() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant NoSpecifiedOrdersAvailable_error_selector = 0xd5da9a1b; uint256 constant NoSpecifiedOrdersAvailable_error_length = 0x04; /* * error InvalidNativeOfferItem() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant InvalidNativeOfferItem_error_selector = 0x12d3f5a3; uint256 constant InvalidNativeOfferItem_error_length = 0x04; /* * error ConsiderationLengthNotEqualToTotalOriginal() * - Defined in ConsiderationEventsAndErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * Revert buffer is memory[0x1c:0x20] */ uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_selector = ( 0x2165628a ); uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_length = 0x04; /* * error Panic(uint256 code) * - Built-in Solidity error * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: code * Revert buffer is memory[0x1c:0x40] */ uint256 constant Panic_error_selector = 0x4e487b71; uint256 constant Panic_error_code_ptr = 0x20; uint256 constant Panic_error_length = 0x24; uint256 constant Panic_arithmetic = 0x11; // uint256 constant Panic_resource = 0x41;
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { BasicOrderRouteType, ItemType, OrderType } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { BasicOrderParameters, OrderStatus } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { OrderValidator } from "./OrderValidator.sol"; import { _revertInsufficientNativeTokensSupplied, _revertInvalidMsgValue, _revertInvalidERC721TransferAmount, _revertUnusedItemParameters } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { AccumulatorDisarmed, AdditionalRecipient_size_shift, AdditionalRecipient_size, BasicOrder_additionalRecipients_data_cdPtr, BasicOrder_addlRecipients_length_cdPtr, BasicOrder_basicOrderType_cdPtr, BasicOrder_common_params_size, BasicOrder_considerationAmount_cdPtr, BasicOrder_considerationHashesArray_ptr, BasicOrder_considerationIdentifier_cdPtr, BasicOrder_considerationItem_endAmount_ptr, BasicOrder_considerationItem_identifier_ptr, BasicOrder_considerationItem_itemType_ptr, BasicOrder_considerationItem_startAmount_ptr, BasicOrder_considerationItem_token_ptr, BasicOrder_considerationItem_typeHash_ptr, BasicOrder_considerationToken_cdPtr, BasicOrder_endTime_cdPtr, BasicOrder_fulfillerConduit_cdPtr, BasicOrder_offerAmount_cdPtr, BasicOrder_offeredItemByteMap, BasicOrder_offerer_cdPtr, BasicOrder_offererConduit_cdPtr, BasicOrder_offerIdentifier_cdPtr, BasicOrder_offerItem_endAmount_ptr, BasicOrder_offerItem_itemType_ptr, BasicOrder_offerItem_token_ptr, BasicOrder_offerItem_typeHash_ptr, BasicOrder_offerToken_cdPtr, BasicOrder_order_considerationHashes_ptr, BasicOrder_order_counter_ptr, BasicOrder_order_offerer_ptr, BasicOrder_order_offerHashes_ptr, BasicOrder_order_orderType_ptr, BasicOrder_order_startTime_ptr, BasicOrder_order_typeHash_ptr, BasicOrder_receivedItemByteMap, BasicOrder_startTime_cdPtr, BasicOrder_totalOriginalAdditionalRecipients_cdPtr, BasicOrder_zone_cdPtr, Common_token_offset, Conduit_execute_ConduitTransfer_length_ptr, Conduit_execute_ConduitTransfer_length, Conduit_execute_ConduitTransfer_offset_ptr, Conduit_execute_ConduitTransfer_ptr, Conduit_execute_signature, Conduit_execute_transferAmount_ptr, Conduit_execute_transferIdentifier_ptr, Conduit_execute_transferFrom_ptr, Conduit_execute_transferItemType_ptr, Conduit_execute_transferTo_ptr, Conduit_execute_transferToken_ptr, EIP712_ConsiderationItem_size, EIP712_OfferItem_size, EIP712_Order_size, FiveWords, FourWords, FreeMemoryPointerSlot, MaskOverLastTwentyBytes, OneConduitExecute_size, OneWord, OneWordShift, OrderFulfilled_baseOffset, OrderFulfilled_baseSize, OrderFulfilled_consideration_body_offset, OrderFulfilled_consideration_head_offset, OrderFulfilled_consideration_length_baseOffset, OrderFulfilled_fulfiller_offset, OrderFulfilled_offer_body_offset, OrderFulfilled_offer_head_offset, OrderFulfilled_offer_length_baseOffset, OrderFulfilled_offer_length_offset_relativeTo_baseOffset, OrderFulfilled_offer_itemType_offset_relativeTo_baseOffset, OrderFulfilled_offer_token_offset_relativeTo_baseOffset, OrderFulfilled_post_memory_region_reservedBytes, OrderFulfilled_selector, ReceivedItem_amount_offset, ReceivedItem_size, receivedItemsHash_ptr, ThreeWords, TwoWords, ZeroSlot } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { Error_selector_offset, InvalidBasicOrderParameterEncoding_error_length, InvalidBasicOrderParameterEncoding_error_selector, InvalidTime_error_endTime_ptr, InvalidTime_error_length, InvalidTime_error_selector, InvalidTime_error_startTime_ptr, MissingOriginalConsiderationItems_error_length, MissingOriginalConsiderationItems_error_selector, UnusedItemParameters_error_length, UnusedItemParameters_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; import { CalldataPointer } from "seaport-types/src/helpers/PointerLibraries.sol"; /** * @title BasicOrderFulfiller * @author 0age * @notice BasicOrderFulfiller contains functionality for fulfilling "basic" * orders with minimal overhead. See documentation for details on what * qualifies as a basic order. */ contract BasicOrderFulfiller is OrderValidator { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) OrderValidator(conduitController) {} /** * @dev Internal function to fulfill an order offering an ERC20, ERC721, or * ERC1155 item by supplying Ether (or other native tokens), ERC20 * tokens, an ERC721 item, or an ERC1155 item as consideration. Six * permutations are supported: Native token to ERC721, Native token to * ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and * ERC1155 to ERC20 (with native tokens supplied as msg.value). For an * order to be eligible for fulfillment via this method, it must * contain a single offer item (though that item may have a greater * amount if the item is not an ERC721). An arbitrary number of * "additional recipients" may also be supplied which will each receive * native tokens or ERC20 items from the fulfiller as consideration. * Refer to the documentation for a more comprehensive summary of how * to utilize this method and what orders are compatible with it. * * @return A boolean indicating whether the order has been fulfilled. */ function _validateAndFulfillBasicOrder() internal returns (bool) { // Declare enums for order type & route to extract from basicOrderType. BasicOrderRouteType route; OrderType orderType; // Declare additional recipient item type to derive from the route type. ItemType additionalRecipientsItemType; bytes32 orderHash; // Utilize assembly to extract the order type and the basic order route. assembly { // Read basicOrderType from calldata. let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr) // Mask all but 2 least-significant bits to derive the order type. orderType := and(basicOrderType, 3) // Divide basicOrderType by four to derive the route. route := shr(2, basicOrderType) // If route > 1 additionalRecipient items are ERC20 (1) else native // token (0). additionalRecipientsItemType := gt(route, 1) } { // Declare temporary variable for enforcing payable status. bool correctPayableStatus; // Utilize assembly to compare the route to the callvalue. assembly { // route 0 and 1 are payable, otherwise route is not payable. correctPayableStatus := eq( additionalRecipientsItemType, iszero(callvalue()) ) } // Revert if msg.value has not been supplied as part of payable // routes or has been supplied as part of non-payable routes. if (!correctPayableStatus) { _revertInvalidMsgValue(msg.value); } } // Declare more arguments that will be derived from route and calldata. address additionalRecipientsToken; ItemType offeredItemType; bool offerTypeIsAdditionalRecipientsType; uint256 callDataPointer; // Declare scope for received item type to manage stack pressure. { ItemType receivedItemType; // Utilize assembly to retrieve function arguments and cast types. assembly { // Check if offered item type == additional recipient item type. offerTypeIsAdditionalRecipientsType := gt(route, 3) // If route > 3 additionalRecipientsToken is at 0xc4 else 0x24. additionalRecipientsToken := calldataload( add( BasicOrder_considerationToken_cdPtr, mul( offerTypeIsAdditionalRecipientsType, BasicOrder_common_params_size ) ) ) // If route > 2, receivedItemType is route - 2. If route is 2, // the receivedItemType is ERC20 (1). Otherwise, it is native // token (0). receivedItemType := byte(route, BasicOrder_receivedItemByteMap) // If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3, // offeredItemType = route. Route is 0 or 1, it is route + 2. offeredItemType := byte(route, BasicOrder_offeredItemByteMap) } // Derive & validate order using parameters and update order status. (orderHash, callDataPointer) = _prepareBasicFulfillmentFromCalldata( orderType, receivedItemType, additionalRecipientsItemType, additionalRecipientsToken, offeredItemType ); } // Declare conduitKey argument used by transfer functions. bytes32 conduitKey; // Utilize assembly to derive conduit (if relevant) based on route. assembly { // use offerer conduit for routes 0-3, fulfiller conduit otherwise. conduitKey := calldataload( add( BasicOrder_offererConduit_cdPtr, shl(OneWordShift, offerTypeIsAdditionalRecipientsType) ) ) } // Transfer tokens based on the route. if (additionalRecipientsItemType == ItemType.NATIVE) { // Ensure neither consideration token nor identifier are set. Note // that dirty upper bits in the consideration token will still cause // this error to be thrown. assembly { if or( calldataload(BasicOrder_considerationToken_cdPtr), calldataload(BasicOrder_considerationIdentifier_cdPtr) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, UnusedItemParameters_error_selector) // revert(abi.encodeWithSignature("UnusedItemParameters()")) revert( Error_selector_offset, UnusedItemParameters_error_length ) } } // Transfer the ERC721 or ERC1155 item, bypassing the accumulator. _transferIndividual721Or1155Item(offeredItemType, conduitKey); // Transfer native to recipients, return excess to caller & wrap up. _transferNativeTokensAndFinalize(); } else { // Initialize an accumulator array. From this point forward, no new // memory regions can be safely allocated until the accumulator is // no longer being utilized, as the accumulator operates in an // open-ended fashion from this memory pointer; existing memory may // still be accessed and modified, however. bytes memory accumulator = new bytes(AccumulatorDisarmed); // Choose transfer method for ERC721 or ERC1155 item based on route. if (route == BasicOrderRouteType.ERC20_TO_ERC721) { // Transfer ERC721 to caller using offerer's conduit preference. _transferERC721( CalldataPointer .wrap(BasicOrder_offerToken_cdPtr) .readAddress(), CalldataPointer .wrap(BasicOrder_offerer_cdPtr) .readAddress(), msg.sender, CalldataPointer .wrap(BasicOrder_offerIdentifier_cdPtr) .readUint256(), CalldataPointer .wrap(BasicOrder_offerAmount_cdPtr) .readUint256(), conduitKey, accumulator ); } else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) { // Transfer ERC1155 to caller with offerer's conduit preference. _transferERC1155( CalldataPointer .wrap(BasicOrder_offerToken_cdPtr) .readAddress(), CalldataPointer .wrap(BasicOrder_offerer_cdPtr) .readAddress(), msg.sender, CalldataPointer .wrap(BasicOrder_offerIdentifier_cdPtr) .readUint256(), CalldataPointer .wrap(BasicOrder_offerAmount_cdPtr) .readUint256(), conduitKey, accumulator ); } else if (route == BasicOrderRouteType.ERC721_TO_ERC20) { // Transfer ERC721 to offerer using caller's conduit preference. _transferERC721( CalldataPointer .wrap(BasicOrder_considerationToken_cdPtr) .readAddress(), msg.sender, CalldataPointer .wrap(BasicOrder_offerer_cdPtr) .readAddress(), CalldataPointer .wrap(BasicOrder_considerationIdentifier_cdPtr) .readUint256(), CalldataPointer .wrap(BasicOrder_considerationAmount_cdPtr) .readUint256(), conduitKey, accumulator ); } else { // route == BasicOrderRouteType.ERC1155_TO_ERC20 // Transfer ERC1155 to offerer with caller's conduit preference. _transferERC1155( CalldataPointer .wrap(BasicOrder_considerationToken_cdPtr) .readAddress(), msg.sender, CalldataPointer .wrap(BasicOrder_offerer_cdPtr) .readAddress(), CalldataPointer .wrap(BasicOrder_considerationIdentifier_cdPtr) .readUint256(), CalldataPointer .wrap(BasicOrder_considerationAmount_cdPtr) .readUint256(), conduitKey, accumulator ); } // Transfer ERC20 tokens to all recipients and wrap up. _transferERC20AndFinalize( offerTypeIsAdditionalRecipientsType, accumulator ); // Trigger any remaining accumulated transfers via call to conduit. _triggerIfArmed(accumulator); } // Determine whether order is restricted and, if so, that it is valid. _assertRestrictedBasicOrderValidity( orderHash, orderType, callDataPointer ); // Clear the reentrancy guard. _clearReentrancyGuard(); return true; } /** * @dev Internal function to prepare fulfillment of a basic order with * manual calldata and memory access. This calculates the order hash, * emits an OrderFulfilled event, and asserts basic order validity. * Note that calldata offsets must be validated as this function * accesses constant calldata pointers for dynamic types that match * default ABI encoding, but valid ABI encoding can use arbitrary * offsets. Checking that the offsets were produced by default encoding * will ensure that other functions using Solidity's calldata accessors * (which calculate pointers from the stored offsets) are reading the * same data as the order hash is derived from. Also note that this * function accesses memory directly. * * @param orderType The order type. * @param receivedItemType The item type of the initial * consideration item on the order. * @param additionalRecipientsItemType The item type of any additional * consideration item on the order. * @param additionalRecipientsToken The ERC20 token contract address (if * applicable) for any additional * consideration item on the order. * @param offeredItemType The item type of the offered item on * the order. * @return orderHash The calculated order hash. */ function _prepareBasicFulfillmentFromCalldata( OrderType orderType, ItemType receivedItemType, ItemType additionalRecipientsItemType, address additionalRecipientsToken, ItemType offeredItemType ) internal returns (bytes32 orderHash, uint256 callDataPointer) { // Ensure this function cannot be triggered during a reentrant call. _setReentrancyGuard(false); // Native tokens rejected during execution. // Verify that calldata offsets for all dynamic types were produced by // default encoding. This ensures that the constants used for calldata // pointers to dynamic types are the same as those calculated by // Solidity using their offsets. Also verify that the basic order type // is within range. _assertValidBasicOrderParameters(); // Check for invalid time and missing original consideration items. // Utilize assembly so that constant calldata pointers can be applied. assembly { // Ensure current timestamp is between order start time & end time. if or( gt(calldataload(BasicOrder_startTime_cdPtr), timestamp()), iszero(gt(calldataload(BasicOrder_endTime_cdPtr), timestamp())) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidTime_error_selector) // Store arguments. mstore( InvalidTime_error_startTime_ptr, calldataload(BasicOrder_startTime_cdPtr) ) mstore( InvalidTime_error_endTime_ptr, calldataload(BasicOrder_endTime_cdPtr) ) // revert(abi.encodeWithSignature( // "InvalidTime(uint256,uint256)", // startTime, // endTime // )) revert(Error_selector_offset, InvalidTime_error_length) } // Ensure consideration array length isn't less than total original. if lt( calldataload(BasicOrder_addlRecipients_length_cdPtr), calldataload(BasicOrder_totalOriginalAdditionalRecipients_cdPtr) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, MissingOriginalConsiderationItems_error_selector) // revert(abi.encodeWithSignature( // "MissingOriginalConsiderationItems()" // )) revert( Error_selector_offset, MissingOriginalConsiderationItems_error_length ) } } { /** * First, handle consideration items. Memory Layout: * 0x60: final hash of the array of consideration item hashes * 0x80-0x160: reused space for EIP712 hashing of each item * - 0x80: ConsiderationItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier * - 0x100: startAmount * - 0x120: endAmount * - 0x140: recipient * 0x160-END_ARR: array of consideration item hashes * - 0x160: primary consideration item EIP712 hash * - 0x180-END_ARR: additional recipient item EIP712 hashes * END_ARR: beginning of data for OrderFulfilled event * - END_ARR + 0x120: length of ReceivedItem array * - END_ARR + 0x140: beginning of data for first ReceivedItem * (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20) */ // Load consideration item typehash from runtime and place on stack. bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH; // Utilize assembly to enable reuse of memory regions and use // constant pointers when possible. assembly { /* * 1. Calculate the EIP712 ConsiderationItem hash for the * primary consideration item of the basic order. */ // Write ConsiderationItem type hash and item type to memory. mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash) mstore( BasicOrder_considerationItem_itemType_ptr, receivedItemType ) // Copy calldata region with (token, identifier, amount) from // BasicOrderParameters to ConsiderationItem. The // considerationAmount is written to startAmount and endAmount // as basic orders do not have dynamic amounts. calldatacopy( BasicOrder_considerationItem_token_ptr, BasicOrder_considerationToken_cdPtr, ThreeWords ) // Copy calldata region with considerationAmount and offerer // from BasicOrderParameters to endAmount and recipient in // ConsiderationItem. calldatacopy( BasicOrder_considerationItem_endAmount_ptr, BasicOrder_considerationAmount_cdPtr, TwoWords ) // Calculate EIP712 ConsiderationItem hash and store it in the // array of EIP712 consideration hashes. mstore( BasicOrder_considerationHashesArray_ptr, keccak256( BasicOrder_considerationItem_typeHash_ptr, EIP712_ConsiderationItem_size ) ) /* * 2. Write a ReceivedItem struct for the primary consideration * item to the consideration array in OrderFulfilled. */ // Get the additional recipients array length from calldata. // This variable will later be repurposed to track the total // original additional recipients instead of the total supplied. let totalAdditionalRecipients := calldataload( BasicOrder_addlRecipients_length_cdPtr ) // Calculate pointer to length of OrderFulfilled consideration // array. Note that this is based on total original additional // recipients and not the supplied additional recipients, since // the pointer only needs to be offset based on the size of the // EIP-712 hashes used to derive the order hash (and the order // hash does not take tips into account as part of derivation). let eventConsiderationArrPtr := add( OrderFulfilled_consideration_length_baseOffset, shl( OneWordShift, calldataload( BasicOrder_totalOriginalAdditionalRecipients_cdPtr ) ) ) // Set the length of the consideration array to the number of // additional recipients, plus one for the primary consideration // item. mstore( eventConsiderationArrPtr, add(totalAdditionalRecipients, 1) ) // Overwrite the consideration array pointer so it points to the // body of the first element eventConsiderationArrPtr := add( eventConsiderationArrPtr, OneWord ) // Set itemType at start of the ReceivedItem memory region. mstore(eventConsiderationArrPtr, receivedItemType) // Copy calldata region (token, identifier, amount & recipient) // from BasicOrderParameters to ReceivedItem memory. calldatacopy( add(eventConsiderationArrPtr, Common_token_offset), BasicOrder_considerationToken_cdPtr, FourWords ) /* * 3. Calculate EIP712 ConsiderationItem hashes for original * additional recipients and add a ReceivedItem for each to the * consideration array in the OrderFulfilled event. The original * additional recipients are all the consideration items signed * by the offerer aside from the primary consideration items of * the order. Uses memory region from 0x80-0x160 as a buffer for * calculating EIP712 ConsiderationItem hashes. */ // Put pointer to consideration hashes array on the stack. // This will be updated as each additional recipient is hashed let considerationHashesPtr := BasicOrder_considerationHashesArray_ptr // Write item type, token, & identifier for additional recipient // to memory region for hashing EIP712 ConsiderationItem; these // values will be reused for each recipient. mstore( BasicOrder_considerationItem_itemType_ptr, additionalRecipientsItemType ) mstore( BasicOrder_considerationItem_token_ptr, additionalRecipientsToken ) mstore(BasicOrder_considerationItem_identifier_ptr, 0) // Declare a stack variable where all additional recipients will // be combined to guard against providing dirty upper bits. let combinedAdditionalRecipients // Only iterate over the total original additional recipients // (not the total supplied additional recipients) when deriving // the order hash. totalAdditionalRecipients := calldataload( BasicOrder_totalOriginalAdditionalRecipients_cdPtr ) let i := 0 for { } lt(i, totalAdditionalRecipients) { i := add(i, 1) } { /* * Calculate EIP712 ConsiderationItem hash for recipient. */ // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, mul(AdditionalRecipient_size, i) ) // Copy startAmount from calldata to the ConsiderationItem // struct. calldatacopy( BasicOrder_considerationItem_startAmount_ptr, additionalRecipientCdPtr, OneWord ) // Copy endAmount and recipient from calldata to the // ConsiderationItem struct. calldatacopy( BasicOrder_considerationItem_endAmount_ptr, additionalRecipientCdPtr, AdditionalRecipient_size ) // Include the recipient as part of combined recipients. combinedAdditionalRecipients := or( combinedAdditionalRecipients, calldataload(add(additionalRecipientCdPtr, OneWord)) ) // Add 1 word to the pointer as part of each loop to reduce // operations needed to get local offset into the array. considerationHashesPtr := add( considerationHashesPtr, OneWord ) // Calculate EIP712 ConsiderationItem hash and store it in // the array of consideration hashes. mstore( considerationHashesPtr, keccak256( BasicOrder_considerationItem_typeHash_ptr, EIP712_ConsiderationItem_size ) ) /* * Write ReceivedItem to OrderFulfilled data. */ // At this point, eventConsiderationArrPtr points to the // beginning of the ReceivedItem struct of the previous // element in the array. Increase it by the size of the // struct to arrive at the pointer for the current element. eventConsiderationArrPtr := add( eventConsiderationArrPtr, ReceivedItem_size ) // Write itemType to the ReceivedItem struct. mstore( eventConsiderationArrPtr, additionalRecipientsItemType ) // Write token to the next word of the ReceivedItem struct. mstore( add(eventConsiderationArrPtr, OneWord), additionalRecipientsToken ) // Copy endAmount & recipient words to ReceivedItem struct. calldatacopy( add( eventConsiderationArrPtr, ReceivedItem_amount_offset ), additionalRecipientCdPtr, TwoWords ) } /* * 4. Hash packed array of ConsiderationItem EIP712 hashes: * `keccak256(abi.encodePacked(receivedItemHashes))` * Note that it is set at 0x60 — all other memory begins at * 0x80. 0x60 is the "zero slot" and will be restored at the end * of the assembly section and before required by the compiler. */ mstore( receivedItemsHash_ptr, keccak256( BasicOrder_considerationHashesArray_ptr, shl(OneWordShift, add(totalAdditionalRecipients, 1)) ) ) /* * 5. Add a ReceivedItem for each tip to the consideration array * in the OrderFulfilled event. The tips are all the * consideration items that were not signed by the offerer and * were provided by the fulfiller. */ // Overwrite length to length of the additionalRecipients array. totalAdditionalRecipients := calldataload( BasicOrder_addlRecipients_length_cdPtr ) for { } lt(i, totalAdditionalRecipients) { i := add(i, 1) } { // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, mul(AdditionalRecipient_size, i) ) // At this point, eventConsiderationArrPtr points to the // beginning of the ReceivedItem struct of the previous // element in the array. Increase it by the size of the // struct to arrive at the pointer for the current element. eventConsiderationArrPtr := add( eventConsiderationArrPtr, ReceivedItem_size ) // Write itemType to the ReceivedItem struct. mstore( eventConsiderationArrPtr, additionalRecipientsItemType ) // Write token to the next word of the ReceivedItem struct. mstore( add(eventConsiderationArrPtr, OneWord), additionalRecipientsToken ) // Copy endAmount & recipient words to ReceivedItem struct. calldatacopy( add( eventConsiderationArrPtr, ReceivedItem_amount_offset ), additionalRecipientCdPtr, TwoWords ) // Include the recipient as part of combined recipients. combinedAdditionalRecipients := or( combinedAdditionalRecipients, calldataload(add(additionalRecipientCdPtr, OneWord)) ) } // Ensure no dirty upper bits on combined additional recipients. if gt(combinedAdditionalRecipients, MaskOverLastTwentyBytes) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidBasicOrderParameterEncoding_error_selector) // revert(abi.encodeWithSignature( // "InvalidBasicOrderParameterEncoding()" // )) revert( Error_selector_offset, InvalidBasicOrderParameterEncoding_error_length ) } } } { /** * Next, handle offered items. Memory Layout: * EIP712 data for OfferItem * - 0x80: OfferItem EIP-712 typehash (constant) * - 0xa0: itemType * - 0xc0: token * - 0xe0: identifier (reused for offeredItemsHash) * - 0x100: startAmount * - 0x120: endAmount */ // Place offer item typehash on the stack. bytes32 typeHash = _OFFER_ITEM_TYPEHASH; // Utilize assembly to enable reuse of memory regions when possible. assembly { /* * 1. Calculate OfferItem EIP712 hash */ // Write the OfferItem typeHash to memory. mstore(BasicOrder_offerItem_typeHash_ptr, typeHash) // Write the OfferItem item type to memory. mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType) // Copy calldata region with (offerToken, offerIdentifier, // offerAmount) from OrderParameters to (token, identifier, // startAmount) in OfferItem struct. The offerAmount is written // to startAmount and endAmount as basic orders do not have // dynamic amounts. calldatacopy( BasicOrder_offerItem_token_ptr, BasicOrder_offerToken_cdPtr, ThreeWords ) // Copy offerAmount from calldata to endAmount in OfferItem // struct. calldatacopy( BasicOrder_offerItem_endAmount_ptr, BasicOrder_offerAmount_cdPtr, OneWord ) // Compute EIP712 OfferItem hash, write result to scratch space: // `keccak256(abi.encode(offeredItem))` mstore( 0, keccak256( BasicOrder_offerItem_typeHash_ptr, EIP712_OfferItem_size ) ) /* * 2. Calculate hash of array of EIP712 hashes and write the * result to the corresponding OfferItem struct: * `keccak256(abi.encodePacked(offerItemHashes))` */ mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord)) } } { /** * Once consideration items and offer items have been handled, * derive the final order hash. Memory Layout: * 0x80-0x1c0: EIP712 data for order * - 0x80: Order EIP-712 typehash (constant) * - 0xa0: orderParameters.offerer * - 0xc0: orderParameters.zone * - 0xe0: keccak256(abi.encodePacked(offerHashes)) * - 0x100: keccak256(abi.encodePacked(considerationHashes)) * - 0x120: orderParameters.basicOrderType (% 4 = orderType) * - 0x140: orderParameters.startTime * - 0x160: orderParameters.endTime * - 0x180: orderParameters.zoneHash * - 0x1a0: orderParameters.salt * - 0x1c0: orderParameters.conduitKey * - 0x1e0: _counters[orderParameters.offerer] (from storage) */ // Read the offerer from calldata and place on the stack. address offerer; assembly { offerer := calldataload(BasicOrder_offerer_cdPtr) } // Read offerer's current counter from storage and place on stack. uint256 counter = _getCounter(offerer); // Load order typehash from runtime code and place on stack. bytes32 typeHash = _ORDER_TYPEHASH; assembly { // Set the OrderItem typeHash in memory. mstore(BasicOrder_order_typeHash_ptr, typeHash) // Copy offerer and zone from OrderParameters in calldata to the // Order struct. calldatacopy( BasicOrder_order_offerer_ptr, BasicOrder_offerer_cdPtr, TwoWords ) // Copy receivedItemsHash from zero slot to the Order struct. mstore( BasicOrder_order_considerationHashes_ptr, mload(receivedItemsHash_ptr) ) // Write the supplied orderType to the Order struct. mstore(BasicOrder_order_orderType_ptr, orderType) // Copy startTime, endTime, zoneHash, salt & conduit from // calldata to the Order struct. calldatacopy( BasicOrder_order_startTime_ptr, BasicOrder_startTime_cdPtr, FiveWords ) // Write offerer's counter, retrieved from storage, to struct. mstore(BasicOrder_order_counter_ptr, counter) // Compute the EIP712 Order hash. orderHash := keccak256( BasicOrder_order_typeHash_ptr, EIP712_Order_size ) } } assembly { /** * After the order hash has been derived, emit OrderFulfilled event: * event OrderFulfilled( * bytes32 orderHash, * address indexed offerer, * address indexed zone, * address fulfiller, * SpentItem[] offer, * > (itemType, token, id, amount) * ReceivedItem[] consideration * > (itemType, token, id, amount, recipient) * ) * topic0 - OrderFulfilled event signature * topic1 - offerer * topic2 - zone * data: * - 0x00: orderHash * - 0x20: fulfiller * - 0x40: offer arr ptr (0x80) * - 0x60: consideration arr ptr (0x120) * - 0x80: offer arr len (1) * - 0xa0: offer.itemType * - 0xc0: offer.token * - 0xe0: offer.identifier * - 0x100: offer.amount * - 0x120: 1 + recipients.length * - 0x140: recipient 0 */ // Derive pointer to start of OrderFulfilled event data. let eventDataPtr := add( OrderFulfilled_baseOffset, shl( OneWordShift, calldataload( BasicOrder_totalOriginalAdditionalRecipients_cdPtr ) ) ) // Write the order hash to the head of the event's data region. mstore(eventDataPtr, orderHash) // Write the fulfiller (i.e. the caller) next for receiver argument. mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller()) // Write the SpentItem and ReceivedItem array offsets (constants). mstore( // SpentItem array offset add(eventDataPtr, OrderFulfilled_offer_head_offset), OrderFulfilled_offer_body_offset ) mstore( // ReceivedItem array offset add(eventDataPtr, OrderFulfilled_consideration_head_offset), OrderFulfilled_consideration_body_offset ) // Set a length of 1 for the offer array. mstore( add( eventDataPtr, OrderFulfilled_offer_length_offset_relativeTo_baseOffset ), 1 ) // Write itemType to the SpentItem struct. mstore( add( eventDataPtr, OrderFulfilled_offer_itemType_offset_relativeTo_baseOffset ), offeredItemType ) // Copy calldata region with (offerToken, offerIdentifier, // offerAmount) from OrderParameters to (token, identifier, // amount) in SpentItem struct. calldatacopy( add( eventDataPtr, OrderFulfilled_offer_token_offset_relativeTo_baseOffset ), BasicOrder_offerToken_cdPtr, ThreeWords ) // Derive total data size including SpentItem and ReceivedItem data. // SpentItem portion is already included in the baseSize constant, // as there can only be one element in the array. let dataSize := add( OrderFulfilled_baseSize, mul( calldataload(BasicOrder_addlRecipients_length_cdPtr), ReceivedItem_size ) ) // Emit OrderFulfilled log with three topics (the event signature // as well as the two indexed arguments, the offerer and the zone). log3( // Supply the pointer for event data in memory. eventDataPtr, // Supply the size of event data in memory. dataSize, // Supply the OrderFulfilled event signature. OrderFulfilled_selector, // Supply the first topic (the offerer). calldataload(BasicOrder_offerer_cdPtr), // Supply the second topic (the zone). calldataload(BasicOrder_zone_cdPtr) ) // Restore the zero slot. mstore(ZeroSlot, 0) // Update the free memory pointer so that event data is persisted. mstore( FreeMemoryPointerSlot, add( eventDataPtr, // Reserve extra 3 words to be used by `authorizeOrder` and // `validatateOrder` if pre-post exection hook to the zone // is required. These 3 memory slots will be used for the // extra data/context and order hashes of the calldata. add( dataSize, OrderFulfilled_post_memory_region_reservedBytes ) ) ) } // Verify the status of the derived order. OrderStatus storage orderStatus = _validateBasicOrder(orderHash); // Determine whether order is restricted and, if so, that it is valid. callDataPointer = _assertRestrictedBasicOrderAuthorization( orderHash, orderType ); // Update the status of the order and mark as fully filled. _updateBasicOrderStatus(orderStatus); // Return the derived order hash. return (orderHash, callDataPointer); } /** * @dev Internal function to transfer an individual ERC721 or ERC1155 item * from a given originator to a given recipient. The accumulator will * be bypassed, meaning that this function should be utilized in cases * where multiple item transfers can be accumulated into a single * conduit call. Sufficient approvals must be set, either on the * respective conduit or on this contract. Note that this function may * only be safely called as part of basic orders, as it assumes a * specific calldata encoding structure that must first be validated. * * @param itemType The type of item to transfer, either ERC721 or ERC1155. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. */ function _transferIndividual721Or1155Item( ItemType itemType, bytes32 conduitKey ) internal { // Retrieve token, from, identifier, and amount from calldata using // fixed calldata offsets based on strict basic parameter encoding. address token; address from; uint256 identifier; uint256 amount; assembly { token := calldataload(BasicOrder_offerToken_cdPtr) from := calldataload(BasicOrder_offerer_cdPtr) identifier := calldataload(BasicOrder_offerIdentifier_cdPtr) amount := calldataload(BasicOrder_offerAmount_cdPtr) } // Determine if the transfer is to be performed via a conduit. if (conduitKey != bytes32(0)) { // Ensure that the amount is non-zero. _assertNonZeroAmount(amount); // Use free memory pointer as calldata offset for the conduit call. uint256 callDataOffset; // Utilize assembly to place each argument in free memory. assembly { // Retrieve the free memory pointer and use it as the offset. callDataOffset := mload(FreeMemoryPointerSlot) // Write ConduitInterface.execute.selector to memory. mstore(callDataOffset, Conduit_execute_signature) // Write the offset to the ConduitTransfer array in memory. mstore( add( callDataOffset, Conduit_execute_ConduitTransfer_offset_ptr ), Conduit_execute_ConduitTransfer_ptr ) // Write the length of the ConduitTransfer array to memory. mstore( add( callDataOffset, Conduit_execute_ConduitTransfer_length_ptr ), Conduit_execute_ConduitTransfer_length ) // Write the item type to memory. mstore( add(callDataOffset, Conduit_execute_transferItemType_ptr), itemType ) // Write the token to memory. mstore( add(callDataOffset, Conduit_execute_transferToken_ptr), token ) // Write the transfer source to memory. mstore( add(callDataOffset, Conduit_execute_transferFrom_ptr), from ) // Write the transfer recipient (the caller) to memory. mstore( add(callDataOffset, Conduit_execute_transferTo_ptr), caller() ) // Write the token identifier to memory. mstore( add(callDataOffset, Conduit_execute_transferIdentifier_ptr), identifier ) // Write the transfer amount to memory. mstore( add(callDataOffset, Conduit_execute_transferAmount_ptr), amount ) } // Perform the call to the conduit. _callConduitUsingOffsets( conduitKey, callDataOffset, OneConduitExecute_size ); } else { // Otherwise, determine whether it is an ERC721 or ERC1155 item. if (itemType == ItemType.ERC721) { // Ensure that exactly one 721 item is being transferred. if (amount != 1) { _revertInvalidERC721TransferAmount(amount); } // Perform transfer to caller via the token contract directly. _performERC721Transfer(token, from, msg.sender, identifier); } else { // Ensure that the amount is non-zero. _assertNonZeroAmount(amount); // Perform transfer to caller via the token contract directly. _performERC1155Transfer( token, from, msg.sender, identifier, amount ); } } } /** * @dev Internal function to transfer Ether (or other native tokens) to a * given recipient as part of basic order fulfillment. Note that * conduits are not utilized for native tokens as the transferred * amount must be provided as msg.value. Also note that this function * may only be safely called as part of basic orders, as it assumes a * specific calldata encoding structure that must first be validated. */ function _transferNativeTokensAndFinalize() internal { // Put native token value supplied by the caller on the stack. uint256 nativeTokensRemaining = msg.value; // Retrieve consideration amount, offerer, and total size of additional // recipients data from calldata using fixed offsets and place on stack. uint256 amount; address payable to; uint256 totalAdditionalRecipientsDataSize; assembly { amount := calldataload(BasicOrder_considerationAmount_cdPtr) to := calldataload(BasicOrder_offerer_cdPtr) totalAdditionalRecipientsDataSize := shl( AdditionalRecipient_size_shift, calldataload(BasicOrder_addlRecipients_length_cdPtr) ) } uint256 additionalRecipientAmount; address payable recipient; // Skip overflow check as for loop is indexed starting at zero. unchecked { // Iterate over additional recipient data by two-word element. for ( uint256 i = 0; i < totalAdditionalRecipientsDataSize; i += AdditionalRecipient_size ) { assembly { // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, i ) additionalRecipientAmount := calldataload( additionalRecipientCdPtr ) recipient := calldataload( add(OneWord, additionalRecipientCdPtr) ) } // Ensure that sufficient native tokens are available. if (additionalRecipientAmount > nativeTokensRemaining) { _revertInsufficientNativeTokensSupplied(); } // Reduce native token value available. Skip underflow check as // subtracted value is confirmed above as less than remaining. nativeTokensRemaining -= additionalRecipientAmount; // Transfer native tokens to the additional recipient. _transferNativeTokens(recipient, additionalRecipientAmount); } } // Ensure that sufficient native tokens are still available. if (amount > nativeTokensRemaining) { _revertInsufficientNativeTokensSupplied(); } // Transfer native tokens to the offerer. _transferNativeTokens(to, amount); // If any native tokens remain after transfers, return to the caller. if (nativeTokensRemaining > amount) { // Skip underflow check as nativeTokensRemaining > amount. unchecked { // Transfer remaining native tokens to the caller. _transferNativeTokens( payable(msg.sender), nativeTokensRemaining - amount ); } } } /** * @dev Internal function to transfer ERC20 tokens to a given recipient as * part of basic order fulfillment. Note that this function may only be * safely called as part of basic orders, as it assumes a specific * calldata encoding structure that must first be validated. Also note * that basic order parameters are retrieved using fixed offsets, this * requires that strict basic order encoding has already been verified. * * @param fromOfferer A boolean indicating whether to decrement amount from * the offered amount. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC20AndFinalize( bool fromOfferer, bytes memory accumulator ) internal { // Declare from and to variables determined by fromOfferer value. address from; address to; // Declare token and amount variables determined by fromOfferer value. address token; uint256 amount; // Declare and check identifier variable within an isolated scope. { // Declare identifier variable determined by fromOfferer value. uint256 identifier; // Set ERC20 token transfer variables based on fromOfferer boolean. if (fromOfferer) { // Use offerer as from value, msg.sender as to value, and offer // token, identifier, & amount values if token is from offerer. assembly { from := calldataload(BasicOrder_offerer_cdPtr) to := caller() token := calldataload(BasicOrder_offerToken_cdPtr) identifier := calldataload(BasicOrder_offerIdentifier_cdPtr) amount := calldataload(BasicOrder_offerAmount_cdPtr) } } else { // Otherwise, use msg.sender as from value, offerer as to value, // and consideration token, identifier, and amount values. assembly { from := caller() to := calldataload(BasicOrder_offerer_cdPtr) token := calldataload(BasicOrder_considerationToken_cdPtr) identifier := calldataload( BasicOrder_considerationIdentifier_cdPtr ) amount := calldataload(BasicOrder_considerationAmount_cdPtr) } } // Ensure that no identifier is supplied. if (identifier != 0) { _revertUnusedItemParameters(); } } // Determine the appropriate conduit to utilize. bytes32 conduitKey; // Utilize assembly to derive conduit (if relevant) based on route. assembly { // Use offerer conduit if fromOfferer, fulfiller conduit otherwise. conduitKey := calldataload( sub( BasicOrder_fulfillerConduit_cdPtr, shl(OneWordShift, fromOfferer) ) ) } // Retrieve total size of additional recipients data and place on stack. uint256 totalAdditionalRecipientsDataSize; assembly { totalAdditionalRecipientsDataSize := shl( AdditionalRecipient_size_shift, calldataload(BasicOrder_addlRecipients_length_cdPtr) ) } uint256 additionalRecipientAmount; address recipient; // Iterate over each additional recipient. for (uint256 i = 0; i < totalAdditionalRecipientsDataSize; ) { assembly { // Retrieve calldata pointer for additional recipient. let additionalRecipientCdPtr := add( BasicOrder_additionalRecipients_data_cdPtr, i ) additionalRecipientAmount := calldataload( additionalRecipientCdPtr ) recipient := calldataload( add(OneWord, additionalRecipientCdPtr) ) } // Decrement the amount to transfer to fulfiller if indicated. if (fromOfferer) { amount -= additionalRecipientAmount; } // Transfer ERC20 tokens to additional recipient given approval. _transferERC20( token, from, recipient, additionalRecipientAmount, conduitKey, accumulator ); // Skip overflow check as for loop is indexed starting at zero. unchecked { i += AdditionalRecipient_size; } } // Transfer ERC20 token amount (from account must have proper approval). _transferERC20(token, from, to, amount, conduitKey, accumulator); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ItemType, OrderType, Side } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, CriteriaResolver, MemoryPointer, OfferItem, OrderParameters } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { _revertCriteriaNotEnabledForItem, _revertInvalidProof, _revertOrderCriteriaResolverOutOfRange } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { CriteriaResolutionErrors } from "seaport-types/src/interfaces/CriteriaResolutionErrors.sol"; import { OneWord, OneWordShift, OrderParameters_consideration_head_offset, Selector_length, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { ConsiderationCriteriaResolverOutOfRange_err_selector, Error_selector_offset, OfferCriteriaResolverOutOfRange_error_selector, UnresolvedConsiderationCriteria_error_itemIndex_ptr, UnresolvedConsiderationCriteria_error_length, UnresolvedConsiderationCriteria_error_orderIndex_ptr, UnresolvedConsiderationCriteria_error_selector, UnresolvedOfferCriteria_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; /** * @title CriteriaResolution * @author 0age * @notice CriteriaResolution contains a collection of pure functions related to * resolving criteria-based items. */ contract CriteriaResolution is CriteriaResolutionErrors { /** * @dev Internal pure function to apply criteria resolvers containing * specific token identifiers and associated proofs to order items. * * @param advancedOrders The orders to apply criteria resolvers to. * @param criteriaResolvers An array where each element contains a * reference to a specific order as well as that * order's offer or consideration, a token * identifier, and a proof that the supplied token * identifier is contained in the order's merkle * root. Note that a root of zero indicates that * any transferable token identifier is valid and * that no proof needs to be supplied. */ function _applyCriteriaResolvers( AdvancedOrder[] memory advancedOrders, CriteriaResolver[] memory criteriaResolvers ) internal pure { // Skip overflow checks as all for loops are indexed starting at zero. unchecked { // Retrieve length of criteria resolvers array and place on stack. uint256 totalCriteriaResolvers = criteriaResolvers.length; // Retrieve length of orders array and place on stack. uint256 totalAdvancedOrders = advancedOrders.length; // Iterate over each criteria resolver. for (uint256 i = 0; i < totalCriteriaResolvers; ++i) { // Retrieve the criteria resolver. CriteriaResolver memory criteriaResolver = ( criteriaResolvers[i] ); // Read the order index from memory and place it on the stack. uint256 orderIndex = criteriaResolver.orderIndex; // Ensure that the order index is in range. if (orderIndex >= totalAdvancedOrders) { _revertOrderCriteriaResolverOutOfRange( criteriaResolver.side ); } // Retrieve the referenced advanced order. AdvancedOrder memory advancedOrder = advancedOrders[orderIndex]; // Skip criteria resolution for order if not fulfilled. if (advancedOrder.numerator == 0) { continue; } // Retrieve the parameters for the order. OrderParameters memory orderParameters = ( advancedOrder.parameters ); { // Get a pointer to the list of items to give to // _updateCriteriaItem. If the resolver refers to a // consideration item, this array pointer will be replaced // with the consideration array. OfferItem[] memory items = orderParameters.offer; // Read component index from memory and place it on stack. uint256 componentIndex = criteriaResolver.index; // Get error selector for `OfferCriteriaResolverOutOfRange`. uint256 errorSelector = ( OfferCriteriaResolverOutOfRange_error_selector ); // If the resolver refers to a consideration item... if (criteriaResolver.side != Side.OFFER) { // Get the pointer to `orderParameters.consideration` // Using the array directly has a significant impact on // the optimized compiler output. MemoryPointer considerationPtr = orderParameters .toMemoryPointer() .pptrOffset( OrderParameters_consideration_head_offset ); // Replace the items pointer with a pointer to the // consideration array. assembly { items := considerationPtr } // Replace the error selector with the selector for // `ConsiderationCriteriaResolverOutOfRange`. errorSelector = ( ConsiderationCriteriaResolverOutOfRange_err_selector ); } // Ensure that the component index is in range. if (componentIndex >= items.length) { assembly { // Revert with either // `OfferCriteriaResolverOutOfRange()` or // `ConsiderationCriteriaResolverOutOfRange()`, // depending on whether the resolver refers to a // consideration item. mstore(0, errorSelector) // revert(abi.encodeWithSignature( // "OfferCriteriaResolverOutOfRange()" // )) // or // revert(abi.encodeWithSignature( // "ConsiderationCriteriaResolverOutOfRange()" // )) revert(Error_selector_offset, Selector_length) } } // Apply the criteria resolver to the item in question. _updateCriteriaItem( items, componentIndex, criteriaResolver ); } } // Iterate over each advanced order. for (uint256 i = 0; i < totalAdvancedOrders; ++i) { // Retrieve the advanced order. AdvancedOrder memory advancedOrder = advancedOrders[i]; // Skip criteria resolution for order if not fulfilled. if (advancedOrder.numerator == 0) { continue; } // Retrieve the parameters for the order. OrderParameters memory orderParameters = ( advancedOrder.parameters ); OrderType orderType = orderParameters.orderType; _ensureAllRequiredCriteriaResolved( i, orderParameters.consideration, orderType, UnresolvedConsiderationCriteria_error_selector ); _toOfferItemArgumentType(_ensureAllRequiredCriteriaResolved)( i, orderParameters.offer, orderType, UnresolvedOfferCriteria_error_selector ); } } } /** * @dev Internal pure function to examine an array of items and ensure that * all criteria-based items (with the exception of wildcard items on * contract orders) have had a criteria resolver successfully applied. * * @param orderIndex The index of the order being examined. * @param items The items to examine. These are consideration items * in the default case, but offer items are also * casted to consideration items as required. * @param orderType The type of order being examined. * @param revertSelector The selector to use when reverting. */ function _ensureAllRequiredCriteriaResolved( uint256 orderIndex, ConsiderationItem[] memory items, OrderType orderType, uint256 revertSelector ) internal pure { // Read items array length from memory and place on stack. uint256 totalItems = items.length; // Iterate over each item on the order. for (uint256 i = 0; i < totalItems; ++i) { ConsiderationItem memory item = items[i]; // Revert if the item is still a criteria item unless the // order is a contract order and the identifier is 0. ItemType itemType = item.itemType; uint256 identifierOrCriteria = item.identifierOrCriteria; assembly { if and( gt(itemType, 3), // Criteria-based item or( iszero(eq(orderType, 4)), // not OrderType.CONTRACT iszero(iszero(identifierOrCriteria)) // not wildcard ) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, revertSelector) // Store arguments. mstore( UnresolvedConsiderationCriteria_error_orderIndex_ptr, orderIndex ) mstore( UnresolvedConsiderationCriteria_error_itemIndex_ptr, i ) // Revert with appropriate UnresolvedCriteria error message. // Unresolved[Offer|Consideration]Criteria(uint256, uint256) revert( Error_selector_offset, UnresolvedConsiderationCriteria_error_length ) } } } } /** * @dev Internal pure function to perform a function cast from a function * that accepts consideration items to a function that accepts offer * items, used by _ensureAllRequiredCriteriaResolved to ensure that * all necessary criteria items have been resolved for an order. * * @param inFn The function that accepts consideration items. * @param outFn The function that accepts offer items. */ function _toOfferItemArgumentType( function(uint256, ConsiderationItem[] memory, OrderType, uint256) internal pure inFn ) internal pure returns ( function(uint256, OfferItem[] memory, OrderType, uint256) internal pure outFn ) { assembly { outFn := inFn } } /** * @dev Internal pure function to update a criteria item. * * @param offer The offer containing the item to update. * @param componentIndex The index of the item to update. * @param criteriaResolver The criteria resolver to use to update the item. */ function _updateCriteriaItem( OfferItem[] memory offer, uint256 componentIndex, CriteriaResolver memory criteriaResolver ) internal pure { // Retrieve relevant item using the component index. OfferItem memory offerItem = offer[componentIndex]; // Read item type and criteria from memory & place on stack. ItemType itemType = offerItem.itemType; // Ensure the specified item type indicates criteria usage. if (!_isItemWithCriteria(itemType)) { _revertCriteriaNotEnabledForItem(); } uint256 identifierOrCriteria = offerItem.identifierOrCriteria; // If criteria is not 0 (i.e. a collection-wide criteria-based item)... if (identifierOrCriteria != uint256(0)) { // Verify identifier inclusion in criteria root using proof. _verifyProof( criteriaResolver.identifier, identifierOrCriteria, criteriaResolver.criteriaProof ); } else if (criteriaResolver.criteriaProof.length != 0) { // Revert if non-empty proof is supplied for a collection-wide item. _revertInvalidProof(); } // Update item type to remove criteria usage. // Use assembly to operate on ItemType enum as a number. ItemType newItemType; assembly { // Item type 4 becomes 2 and item type 5 becomes 3. newItemType := sub(itemType, 2) } offerItem.itemType = newItemType; // Update identifier w/ supplied identifier. offerItem.identifierOrCriteria = criteriaResolver.identifier; } /** * @dev Internal pure function to check whether a given item type represents * a criteria-based ERC721 or ERC1155 item (e.g. an item that can be * resolved to one of a number of different identifiers at the time of * order fulfillment). * * @param itemType The item type in question. * * @return withCriteria A boolean indicating that the item type in question * represents a criteria-based item. */ function _isItemWithCriteria( ItemType itemType ) internal pure returns (bool withCriteria) { // ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5. assembly { withCriteria := gt(itemType, 3) } } /** * @dev Internal pure function to ensure that a given element is contained * in a merkle root via a supplied proof. * * @param leaf The element for which to prove inclusion. * @param root The merkle root that inclusion will be proved against. * @param proof The merkle proof. */ function _verifyProof( uint256 leaf, uint256 root, bytes32[] memory proof ) internal pure { // Declare a variable that will be used to determine proof validity. bool isValid; // Utilize assembly to efficiently verify the proof against the root. assembly { // Store the leaf at the beginning of scratch space. mstore(0, leaf) // Derive the hash of the leaf to use as the initial proof element. let computedHash := keccak256(0, OneWord) // Get memory start location of the first element in proof array. let data := add(proof, OneWord) // Iterate over each proof element to compute the root hash. for { // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(data, shl(OneWordShift, mload(proof))) } lt(data, end) { // Increment by one word at a time. data := add(data, OneWord) } { // Get the proof element. let loadedData := mload(data) // Sort proof elements and place them in scratch space. // Slot of `computedHash` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(OneWordShift, gt(computedHash, loadedData)) // Store elements to hash contiguously in scratch space. Scratch // space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes. mstore(scratch, computedHash) mstore(xor(scratch, OneWord), loadedData) // Derive the updated hash. computedHash := keccak256(0, TwoWords) } // Compare the final hash to the supplied root. isValid := eq(computedHash, root) } // Revert if computed hash does not equal supplied root. if (!isValid) { _revertInvalidProof(); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { AmountDerivationErrors } from "seaport-types/src/interfaces/AmountDerivationErrors.sol"; import { Error_selector_offset, InexactFraction_error_length, InexactFraction_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; /** * @title AmountDeriver * @author 0age * @notice AmountDeriver contains view and pure functions related to deriving * item amounts based on partial fill quantity and on linear * interpolation based on current time when the start amount and end * amount differ. */ contract AmountDeriver is AmountDerivationErrors { /** * @dev Internal view function to derive the current amount of a given item * based on the current price, the starting price, and the ending * price. If the start and end prices differ, the current price will be * interpolated on a linear basis. Note that this function expects that * the startTime parameter of orderParameters is not greater than the * current block timestamp and that the endTime parameter is greater * than the current block timestamp. If this condition is not upheld, * duration / elapsed / remaining variables will underflow. * * @param startAmount The starting amount of the item. * @param endAmount The ending amount of the item. * @param startTime The starting time of the order. * @param endTime The end time of the order. * @param roundUp A boolean indicating whether the resultant amount * should be rounded up or down. * * @return amount The current amount. */ function _locateCurrentAmount( uint256 startAmount, uint256 endAmount, uint256 startTime, uint256 endTime, bool roundUp ) internal view returns (uint256 amount) { // Only modify end amount if it doesn't already equal start amount. if (startAmount != endAmount) { // Declare variables to derive in the subsequent unchecked scope. uint256 duration; uint256 elapsed; uint256 remaining; // Skip underflow checks as startTime <= block.timestamp < endTime. unchecked { // Derive the duration for the order and place it on the stack. duration = endTime - startTime; // Derive time elapsed since the order started & place on stack. elapsed = block.timestamp - startTime; // Derive time remaining until order expires and place on stack. remaining = duration - elapsed; } // Aggregate new amounts weighted by time with rounding factor. uint256 totalBeforeDivision = ((startAmount * remaining) + (endAmount * elapsed)); // Use assembly to combine operations and skip divide-by-zero check. assembly { // Multiply by iszero(iszero(totalBeforeDivision)) to ensure // amount is set to zero if totalBeforeDivision is zero, // as intermediate overflow can occur if it is zero. amount := mul( iszero(iszero(totalBeforeDivision)), // Subtract 1 from the numerator and add 1 to the result // if roundUp is true to get proper rounding direction. // Division is performed with no zero check as duration // cannot be zero as long as startTime < endTime. add( div(sub(totalBeforeDivision, roundUp), duration), roundUp ) ) } // Return the current amount. return amount; } // Return the original amount as startAmount == endAmount. return endAmount; } /** * @dev Internal pure function to return a fraction of a given value and to * ensure the resultant value does not have any fractional component. * Note that this function assumes that zero will never be supplied as * the denominator parameter; invalid / undefined behavior will result * should a denominator of zero be provided. * * @param numerator A value indicating the portion of the order that * should be filled. * @param denominator A value indicating the total size of the order. Note * that this value cannot be equal to zero. * @param value The value for which to compute the fraction. * * @return newValue The value after applying the fraction. */ function _getFraction( uint256 numerator, uint256 denominator, uint256 value ) internal pure returns (uint256 newValue) { // Return value early in cases where the fraction resolves to 1. if (numerator == denominator) { return value; } // Ensure fraction can be applied to the value with no remainder. Note // that the denominator cannot be zero. assembly { // Ensure new value contains no remainder via mulmod operator. // Credit to @hrkrshnn + @axic for proposing this optimal solution. if mulmod(value, numerator, denominator) { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, InexactFraction_error_selector) // revert(abi.encodeWithSignature("InexactFraction()")) revert(Error_selector_offset, InexactFraction_error_length) } } // Multiply the numerator by the value and ensure no overflow occurs. uint256 valueTimesNumerator = value * numerator; // Divide by the denominator (note that denominator cannot be zero). assembly { // Perform division without zero check. newValue := div(valueTimesNumerator, denominator) } } /** * @dev Internal view function to apply a fraction to a consideration * or offer item. * * @param startAmount The starting amount of the item. * @param endAmount The ending amount of the item. * @param numerator A value indicating the portion of the order that * should be filled. * @param denominator A value indicating the total size of the order. * @param startTime The starting time of the order. * @param endTime The end time of the order. * @param roundUp A boolean indicating whether the resultant * amount should be rounded up or down. * * @return amount The received item to transfer with the final amount. */ function _applyFraction( uint256 startAmount, uint256 endAmount, uint256 numerator, uint256 denominator, uint256 startTime, uint256 endTime, bool roundUp ) internal view returns (uint256 amount) { // If start amount equals end amount, apply fraction to end amount. if (startAmount == endAmount) { // Apply fraction to end amount. amount = _getFraction(numerator, denominator, endAmount); } else { // Otherwise, apply fraction to both and interpolated final amount. amount = _locateCurrentAmount( _getFraction(numerator, denominator, startAmount), _getFraction(numerator, denominator, endAmount), startTime, endTime, roundUp ); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { Side } from "../lib/ConsiderationEnums.sol"; /** * @title FulfillmentApplicationErrors * @author 0age * @notice FulfillmentApplicationErrors contains errors related to fulfillment * application and aggregation. */ interface FulfillmentApplicationErrors { /** * @dev Revert with an error when a fulfillment is provided that does not * declare at least one component as part of a call to fulfill * available orders. */ error MissingFulfillmentComponentOnAggregation(Side side); /** * @dev Revert with an error when a fulfillment is provided that does not * declare at least one offer component and at least one consideration * component. */ error OfferAndConsiderationRequiredOnFulfillment(); /** * @dev Revert with an error when the initial offer item named by a * fulfillment component does not match the type, token, identifier, * or conduit preference of the initial consideration item. * * @param fulfillmentIndex The index of the fulfillment component that * does not match the initial offer item. */ error MismatchedFulfillmentOfferAndConsiderationComponents( uint256 fulfillmentIndex ); /** * @dev Revert with an error when an order or item index are out of range * or a fulfillment component does not match the type, token, * identifier, or conduit preference of the initial consideration item. */ error InvalidFulfillmentComponentData(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { OrderType } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { AdvancedOrder, ConsiderationItem, OfferItem, Order, OrderComponents, OrderParameters, OrderStatus } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { _revertBadFraction, _revertCannotCancelOrder, _revertConsiderationLengthNotEqualToTotalOriginal, _revertInvalidContractOrder, _revertPartialFillsNotEnabledForOrder } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { Executor } from "./Executor.sol"; import { ZoneInteraction } from "./ZoneInteraction.sol"; import { MemoryPointer } from "seaport-types/src/helpers/PointerLibraries.sol"; import { AdvancedOrder_denominator_offset, AdvancedOrder_numerator_offset, BasicOrder_basicOrderParameters_cd_offset, BasicOrder_offerer_cdPtr, BasicOrder_signature_cdPtr, Common_amount_offset, Common_endAmount_offset, Common_identifier_offset, Common_token_offset, ConsiderItem_recipient_offset, ContractOrder_orderHash_offerer_shift, MaxUint120, OrderStatus_filledDenominator_offset, OrderStatus_filledNumerator_offset, OrderStatus_ValidatedAndNotCancelled, OrderStatus_ValidatedAndNotCancelledAndFullyFilled, ReceivedItem_recipient_offset } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { Error_selector_offset, Panic_arithmetic, Panic_error_code_ptr, Panic_error_length, Panic_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; import { CalldataPointer } from "seaport-types/src/helpers/PointerLibraries.sol"; /** * @title OrderValidator * @author 0age * @notice OrderValidator contains functionality related to validating orders * and updating their status. */ contract OrderValidator is Executor, ZoneInteraction { // Track status of each order (validated, cancelled, and fraction filled). mapping(bytes32 => OrderStatus) private _orderStatus; // Track nonces for contract offerers. mapping(address => uint256) internal _contractNonces; /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Executor(conduitController) {} /** * @dev Internal function to verify the status of a basic order. * Note that this function may only be safely called as part of basic * orders, as it assumes a specific calldata encoding structure that * must first be validated. * * @param orderHash The hash of the order. */ function _validateBasicOrder( bytes32 orderHash ) internal view returns (OrderStatus storage orderStatus) { // Retrieve offerer directly using fixed calldata offset based on strict // basic parameter encoding. address offerer; assembly { offerer := calldataload(BasicOrder_offerer_cdPtr) } // Retrieve the order status for the given order hash. orderStatus = _orderStatus[orderHash]; // Ensure order is fillable and is not cancelled. _verifyOrderStatus( orderHash, orderStatus, true, // Only allow unused orders when fulfilling basic orders. _runTimeConstantTrue() // Signifies to revert if order is invalid. ); unchecked { // If the order is not already validated, verify supplied signature. if (!orderStatus.isValidated) { _verifySignature( offerer, orderHash, _toBytesReturnType(_decodeBytes)( // Wrap the absolute pointer to the order signature as a // CalldataPointer. CalldataPointer.wrap( // Read the relative pointer to the order signature. CalldataPointer .wrap(BasicOrder_signature_cdPtr) .readMaskedUint256() + // Add the BasicOrderParameters struct offset to // the relative pointer. BasicOrder_basicOrderParameters_cd_offset ) ) ); } } } /** * @dev Internal function to update the status of a basic order, assuming * all validation has already been performed. * * @param orderStatus A storage pointer referencing the order status. */ function _updateBasicOrderStatus(OrderStatus storage orderStatus) internal { // Utilize assembly to efficiently update the order status. assembly { // Update order status as validated, not cancelled, & fully filled. sstore( orderStatus.slot, OrderStatus_ValidatedAndNotCancelledAndFullyFilled ) } } /** * @dev Internal function to validate an order, determine what portion to * fill, and update its status. The desired fill amount is supplied as * a fraction, as is the returned amount to fill. * * @param advancedOrder The order to fulfill as well as the fraction to * fill. Note that all offer and consideration * amounts must divide with no remainder in order * for a partial fill to be valid. * @param revertOnInvalid A boolean indicating whether to revert if the * order is invalid due to the time or status. * * @return orderHash The order hash. * @return numerator A value indicating the portion of the order that * will be filled. * @return denominator A value indicating the total size of the order. */ function _validateOrder( AdvancedOrder memory advancedOrder, bool revertOnInvalid ) internal view returns (bytes32 orderHash, uint256 numerator, uint256 denominator) { // Retrieve the parameters for the order. OrderParameters memory orderParameters = advancedOrder.parameters; // Ensure current timestamp falls between order start time and end time. if ( !_verifyTime( orderParameters.startTime, orderParameters.endTime, revertOnInvalid ) ) { // Assuming an invalid time and no revert, return zeroed out values. return (bytes32(0), 0, 0); } // Read numerator and denominator from memory and place on the stack. // Note that overflowed values are masked. assembly { numerator := and( mload(add(advancedOrder, AdvancedOrder_numerator_offset)), MaxUint120 ) denominator := and( mload(add(advancedOrder, AdvancedOrder_denominator_offset)), MaxUint120 ) } // Declare variable for tracking the validity of the supplied fraction. bool invalidFraction; // If the order is a contract order, return the generated order. if (orderParameters.orderType == OrderType.CONTRACT) { // Ensure that the numerator and denominator are both equal to 1. assembly { // (1 ^ nd =/= 0) => (nd =/= 1) => (n =/= 1) || (d =/= 1) // It's important that the values are 120-bit masked before // multiplication is applied. Otherwise, the last implication // above is not correct (mod 2^256). invalidFraction := xor(mul(numerator, denominator), 1) } // Revert if the supplied numerator and denominator are not valid. if (invalidFraction) { _revertBadFraction(); } // Return a placeholder orderHash and a fill fraction of 1/1. // The real orderHash will be returned by _getGeneratedOrder. return (bytes32(uint256(1)), 1, 1); } // Ensure numerator does not exceed denominator and is not zero. assembly { invalidFraction := or(gt(numerator, denominator), iszero(numerator)) } // Revert if the supplied numerator and denominator are not valid. if (invalidFraction) { _revertBadFraction(); } // If attempting partial fill (n < d) check order type & ensure support. if ( _doesNotSupportPartialFills( orderParameters.orderType, numerator, denominator ) ) { // Revert if partial fill was attempted on an unsupported order. _revertPartialFillsNotEnabledForOrder(); } // Retrieve current counter & use it w/ parameters to derive order hash. orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters); // Retrieve the order status using the derived order hash. OrderStatus storage orderStatus = _orderStatus[orderHash]; // Ensure order is fillable and is not cancelled. if ( // Allow partially used orders to be filled. !_verifyOrderStatus(orderHash, orderStatus, false, revertOnInvalid) ) { // Assuming an invalid order status and no revert, return zero fill. return (orderHash, 0, 0); } // If the order is not already validated, verify the supplied signature. if (!orderStatus.isValidated) { _verifySignature( orderParameters.offerer, orderHash, advancedOrder.signature ); } // Utilize assembly to determine the fraction to fill and update status. assembly { let orderStatusSlot := orderStatus.slot // Read filled amount as numerator and denominator and put on stack. let filledNumerator := sload(orderStatusSlot) let filledDenominator := shr( OrderStatus_filledDenominator_offset, filledNumerator ) // "Loop" until the appropriate fill fraction has been determined. for { } 1 { } { // If no portion of the order has been filled yet... if iszero(filledDenominator) { // fill the full supplied fraction. filledNumerator := numerator // Exit the "loop" early. break } // Shift and mask to calculate the current filled numerator. filledNumerator := and( shr(OrderStatus_filledNumerator_offset, filledNumerator), MaxUint120 ) // If denominator of 1 supplied, fill entire remaining amount. if eq(denominator, 1) { // Set the amount to fill to the remaining amount. numerator := sub(filledDenominator, filledNumerator) // Set the fill size to the current size. denominator := filledDenominator // Exit the "loop" early. break } // If supplied denominator is equal to the current one: if eq(denominator, filledDenominator) { // Increment the filled numerator by the new numerator. filledNumerator := add(numerator, filledNumerator) // Once adjusted, if current + supplied numerator exceeds // the denominator: let carry := mul( sub(filledNumerator, denominator), gt(filledNumerator, denominator) ) // reduce the amount to fill by the excess. numerator := sub(numerator, carry) // Exit the "loop" early. break } // Otherwise, if supplied denominator differs from current one: // Scale the filled amount up by the supplied size. filledNumerator := mul(filledNumerator, denominator) // Scale the supplied amount and size up by the current size. numerator := mul(numerator, filledDenominator) denominator := mul(denominator, filledDenominator) // Increment the filled numerator by the new numerator. filledNumerator := add(numerator, filledNumerator) // Once adjusted, if current + supplied numerator exceeds // denominator: let carry := mul( sub(filledNumerator, denominator), gt(filledNumerator, denominator) ) // reduce the amount to fill by the excess. numerator := sub(numerator, carry) // Reduce the filled amount by the excess as well. filledNumerator := sub(filledNumerator, carry) // Check denominator for uint120 overflow. if gt(denominator, MaxUint120) { // Derive greatest common divisor using euclidean algorithm. function gcd(_a, _b) -> out { // "Loop" until only one non-zero value remains. for { } _b { } { // Assign the second value to a temporary variable. let _c := _b // Derive the modulus of the two values. _b := mod(_a, _c) // Set the first value to the temporary value. _a := _c } // Return the remaining non-zero value. out := _a } // Determine the amount to scale down the fill fractions. let scaleDown := gcd( numerator, gcd(filledNumerator, denominator) ) // Ensure that the divisor is at least one. let safeScaleDown := add(scaleDown, iszero(scaleDown)) // Scale fractional values down by gcd. numerator := div(numerator, safeScaleDown) denominator := div(denominator, safeScaleDown) // Perform the overflow check a second time. if gt(denominator, MaxUint120) { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature( // "Panic(uint256)", 0x11 // )) revert(Error_selector_offset, Panic_error_length) } } // Exit the "loop" now that all evaluation is complete. break } } } /** * @dev Internal function to update the status of an order by applying the * supplied fill fraction to the remaining order fraction. If * revertOnInvalid is true, the function will revert if the order is * unavailable or if it is not possible to apply the supplied fill * fraction to the remaining amount (e.g., if there is not enough * of the order remaining to fill the supplied fraction, or if the * fractions cannot be represented by two uint120 values). * * @param orderHash The hash of the order. * @param numerator The numerator of the fraction filled to write to * the order status. * @param denominator The denominator of the fraction filled to write to * the order status. * @param revertOnInvalid Whether to revert if an order is already filled. */ function _updateStatus( bytes32 orderHash, uint256 numerator, uint256 denominator, bool revertOnInvalid ) internal returns (bool) { // Retrieve the order status using the derived order hash. OrderStatus storage orderStatus = _orderStatus[orderHash]; bool hasCarry = false; uint256 orderStatusSlot; uint256 filledNumerator; // Utilize assembly to determine the fraction to fill and update status. assembly { orderStatusSlot := orderStatus.slot // Read filled amount as numerator and denominator and put on stack. filledNumerator := sload(orderStatusSlot) let filledDenominator := shr( OrderStatus_filledDenominator_offset, filledNumerator ) // "Loop" until the appropriate fill fraction has been determined. for { } 1 { } { // If no portion of the order has been filled yet... if iszero(filledDenominator) { // fill the full supplied fraction. filledNumerator := numerator // Exit the "loop" early. break } // Shift and mask to calculate the current filled numerator. filledNumerator := and( shr(OrderStatus_filledNumerator_offset, filledNumerator), MaxUint120 ) // If supplied denominator is equal to the current one: if eq(denominator, filledDenominator) { // Increment the filled numerator by the new numerator. filledNumerator := add(numerator, filledNumerator) hasCarry := gt(filledNumerator, denominator) // Exit the "loop" early. break } // Otherwise, if supplied denominator differs from current one: // Scale the filled amount up by the supplied size. filledNumerator := mul(filledNumerator, denominator) // Scale the supplied amount and size up by the current size. numerator := mul(numerator, filledDenominator) denominator := mul(denominator, filledDenominator) // Increment the filled numerator by the new numerator. filledNumerator := add(numerator, filledNumerator) hasCarry := gt(filledNumerator, denominator) // Check filledNumerator and denominator for uint120 overflow. if or( gt(filledNumerator, MaxUint120), gt(denominator, MaxUint120) ) { // Derive greatest common divisor using euclidean algorithm. function gcd(_a, _b) -> out { // "Loop" until only one non-zero value remains. for { } _b { } { // Assign the second value to a temporary variable. let _c := _b // Derive the modulus of the two values. _b := mod(_a, _c) // Set the first value to the temporary value. _a := _c } // Return the remaining non-zero value. out := _a } // Determine amount to scale down the new filled fraction. let scaleDown := gcd(filledNumerator, denominator) // Ensure that the divisor is at least one. let safeScaleDown := add(scaleDown, iszero(scaleDown)) // Scale new filled fractional values down by gcd. filledNumerator := div(filledNumerator, safeScaleDown) denominator := div(denominator, safeScaleDown) // Perform the overflow check a second time. if or( gt(filledNumerator, MaxUint120), gt(denominator, MaxUint120) ) { // Store the Panic error signature. mstore(0, Panic_error_selector) // Store the arithmetic (0x11) panic code. mstore(Panic_error_code_ptr, Panic_arithmetic) // revert(abi.encodeWithSignature( // "Panic(uint256)", 0x11 // )) revert(Error_selector_offset, Panic_error_length) } } // Exit the "loop" now that all evaluation is complete. break } } if (hasCarry) { if (revertOnInvalid) { revert OrderAlreadyFilled(orderHash); } else { return false; } } assembly { // Update order status and fill amount, packing struct values. // [denominator: 15 bytes] [numerator: 15 bytes] // [isCancelled: 1 byte] [isValidated: 1 byte] sstore( orderStatusSlot, or( OrderStatus_ValidatedAndNotCancelled, or( shl( OrderStatus_filledNumerator_offset, filledNumerator ), shl(OrderStatus_filledDenominator_offset, denominator) ) ) ) } return true; } /** * @dev Internal function to generate a contract order. When a * collection-wide criteria-based item (criteria = 0) is provided as an * input to a contract order, the contract offerer has full latitude to * choose any identifier it wants mid-flight, which differs from the * usual behavior. For regular criteria-based orders with * identifierOrCriteria = 0, the fulfiller can pick which identifier to * receive by providing a CriteriaResolver. For contract offers with * identifierOrCriteria = 0, Seaport does not expect a corresponding * CriteriaResolver, and will revert if one is provided. * * @param orderParameters The parameters for the order. * @param context The context for generating the order. * @param revertOnInvalid Whether to revert on invalid input. * * @return orderHash The order hash. */ function _getGeneratedOrder( OrderParameters memory orderParameters, bytes memory context, bool revertOnInvalid ) internal returns (bytes32 orderHash) { // Ensure that consideration array length is equal to the total original // consideration items value. if ( orderParameters.consideration.length != orderParameters.totalOriginalConsiderationItems ) { _revertConsiderationLengthNotEqualToTotalOriginal(); } { address offerer = orderParameters.offerer; bool success; (MemoryPointer cdPtr, uint256 size) = _encodeGenerateOrder( orderParameters, context ); assembly { success := call(gas(), offerer, 0, cdPtr, size, 0, 0) } { // Note: overflow impossible; nonce can't increment that high. uint256 contractNonce; unchecked { // Note: nonce will be incremented even for skipped orders, // and even if generateOrder's return data does not satisfy // all the constraints. This is the case when errorBuffer // != 0 and revertOnInvalid == false. contractNonce = _contractNonces[offerer]++; } assembly { // Shift offerer address up 96 bytes and combine with nonce. orderHash := xor( contractNonce, shl(ContractOrder_orderHash_offerer_shift, offerer) ) } } // Revert or skip if the call to generate the contract order failed. if (!success) { if (revertOnInvalid) { _revertWithReasonIfOneIsReturned(); _revertInvalidContractOrder(orderHash); } return bytes32(0); } } // From this point onward, do not allow for skipping orders as the // contract offerer may have modified state in expectation of any named // consideration items being sent to their designated recipients. // Decode the returned contract order and/or update the error buffer. ( uint256 errorBuffer, OfferItem[] memory offer, ConsiderationItem[] memory consideration ) = _convertGetGeneratedOrderResult(_decodeGenerateOrderReturndata)( orderParameters.offer, orderParameters.consideration ); // Revert if the returndata could not be decoded correctly. if (errorBuffer != 0) { _revertInvalidContractOrder(orderHash); } // Assign the returned offer item in place of the original item. orderParameters.offer = offer; // Assign returned consideration item in place of the original item. orderParameters.consideration = consideration; // Return the order hash. return orderHash; } /** * @dev Internal function to cancel an arbitrary number of orders. Note that * only the offerer or the zone of a given order may cancel it. Callers * should ensure that the intended order was cancelled by calling * `getOrderStatus` and confirming that `isCancelled` returns `true`. * Also note that contract orders are not cancellable. * * @param orders The orders to cancel. * * @return cancelled A boolean indicating whether the supplied orders were * successfully cancelled. */ function _cancel( OrderComponents[] calldata orders ) internal returns (bool cancelled) { // Ensure that the reentrancy guard is not currently set. _assertNonReentrant(); // Declare variables outside of the loop. OrderStatus storage orderStatus; // Declare a variable for tracking invariants in the loop. bool anyInvalidCallerOrContractOrder; // Skip overflow check as for loop is indexed starting at zero. unchecked { // Read length of the orders array from memory and place on stack. uint256 totalOrders = orders.length; // Iterate over each order. for (uint256 i = 0; i < totalOrders; ) { // Retrieve the order. OrderComponents calldata order = orders[i]; address offerer = order.offerer; address zone = order.zone; OrderType orderType = order.orderType; assembly { // If caller is neither the offerer nor zone, or a contract // order is present, flag anyInvalidCallerOrContractOrder. anyInvalidCallerOrContractOrder := or( anyInvalidCallerOrContractOrder, // orderType == CONTRACT || // !(caller == offerer || caller == zone) or( eq(orderType, 4), iszero( or(eq(caller(), offerer), eq(caller(), zone)) ) ) ) } bytes32 orderHash = _deriveOrderHash( _toOrderParametersReturnType( _decodeOrderComponentsAsOrderParameters )(order.toCalldataPointer()), order.counter ); // Retrieve the order status using the derived order hash. orderStatus = _orderStatus[orderHash]; // Update the order status as not valid and cancelled. orderStatus.isValidated = false; orderStatus.isCancelled = true; // Emit an event signifying that the order has been cancelled. emit OrderCancelled(orderHash, offerer, zone); // Increment counter inside body of loop for gas efficiency. ++i; } } if (anyInvalidCallerOrContractOrder) { _revertCannotCancelOrder(); } // Return a boolean indicating that orders were successfully cancelled. cancelled = true; } /** * @dev Internal function to validate an arbitrary number of orders, thereby * registering their signatures as valid and allowing the fulfiller to * skip signature verification on fulfillment. Note that validated * orders may still be unfulfillable due to invalid item amounts or * other factors; callers should determine whether validated orders are * fulfillable by simulating the fulfillment call prior to execution. * Also note that anyone can validate a signed order, but only the * offerer can validate an order without supplying a signature. * * @param orders The orders to validate. * * @return validated A boolean indicating whether the supplied orders were * successfully validated. */ function _validate( Order[] memory orders ) internal returns (bool validated) { // Ensure that the reentrancy guard is not currently set. _assertNonReentrant(); // Declare variables outside of the loop. OrderStatus storage orderStatus; bytes32 orderHash; address offerer; // Skip overflow check as for loop is indexed starting at zero. unchecked { // Read length of the orders array from memory and place on stack. uint256 totalOrders = orders.length; // Iterate over each order. for (uint256 i = 0; i < totalOrders; ++i) { // Retrieve the order. Order memory order = orders[i]; // Retrieve the order parameters. OrderParameters memory orderParameters = order.parameters; // Skip contract orders. if (orderParameters.orderType == OrderType.CONTRACT) { continue; } // Move offerer from memory to the stack. offerer = orderParameters.offerer; // Get current counter & use it w/ params to derive order hash. orderHash = _assertConsiderationLengthAndGetOrderHash( orderParameters ); // Retrieve the order status using the derived order hash. orderStatus = _orderStatus[orderHash]; // Ensure order is fillable and retrieve the filled amount. _verifyOrderStatus( orderHash, orderStatus, false, // Signifies that partially filled orders are valid. _runTimeConstantTrue() // Revert if order is invalid. ); // If the order has not already been validated... if (!orderStatus.isValidated) { // Ensure that consideration array length is equal to the // total original consideration items value. if ( orderParameters.consideration.length != orderParameters.totalOriginalConsiderationItems ) { _revertConsiderationLengthNotEqualToTotalOriginal(); } // Verify the supplied signature. _verifySignature(offerer, orderHash, order.signature); // Update order status to mark the order as valid. orderStatus.isValidated = true; // Emit an event signifying the order has been validated. emit OrderValidated(orderHash, orderParameters); } } } // Return a boolean indicating that orders were successfully validated. validated = true; } /** * @dev Internal view function to retrieve the status of a given order by * hash, including whether the order has been cancelled or validated * and the fraction of the order that has been filled. * * @param orderHash The order hash in question. * * @return isValidated A boolean indicating whether the order in question * has been validated (i.e. previously approved or * partially filled). * @return isCancelled A boolean indicating whether the order in question * has been cancelled. * @return totalFilled The total portion of the order that has been filled * (i.e. the "numerator"). * @return totalSize The total size of the order that is either filled or * unfilled (i.e. the "denominator"). */ function _getOrderStatus( bytes32 orderHash ) internal view returns ( bool isValidated, bool isCancelled, uint256 totalFilled, uint256 totalSize ) { // Retrieve the order status using the order hash. OrderStatus storage orderStatus = _orderStatus[orderHash]; // Return the fields on the order status. return ( orderStatus.isValidated, orderStatus.isCancelled, orderStatus.numerator, orderStatus.denominator ); } /** * @dev Internal pure function to check whether a given order type indicates * that partial fills are not supported (e.g. only "full fills" are * allowed for the order in question). * * @param orderType The order type in question. * @param numerator The numerator in question. * @param denominator The denominator in question. * * @return isFullOrder A boolean indicating whether the order type only * supports full fills. */ function _doesNotSupportPartialFills( OrderType orderType, uint256 numerator, uint256 denominator ) internal pure returns (bool isFullOrder) { // The "full" order types are even, while "partial" order types are odd. // Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper. The // check is only necessary if numerator is less than denominator. assembly { // Equivalent to `uint256(orderType) & 1 == 0`. isFullOrder := and( lt(numerator, denominator), iszero(and(orderType, 1)) ) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { Side } from "../lib/ConsiderationEnums.sol"; /** * @title CriteriaResolutionErrors * @author 0age * @notice CriteriaResolutionErrors contains all errors related to criteria * resolution. */ interface CriteriaResolutionErrors { /** * @dev Revert with an error when providing a criteria resolver that refers * to an order that has not been supplied. * * @param side The side of the order that was not supplied. */ error OrderCriteriaResolverOutOfRange(Side side); /** * @dev Revert with an error if an offer item still has unresolved criteria * after applying all criteria resolvers. * * @param orderIndex The index of the order that contains the offer item. * @param offerIndex The index of the offer item that still has unresolved * criteria. */ error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex); /** * @dev Revert with an error if a consideration item still has unresolved * criteria after applying all criteria resolvers. * * @param orderIndex The index of the order that contains the * consideration item. * @param considerationIndex The index of the consideration item that still * has unresolved criteria. */ error UnresolvedConsiderationCriteria( uint256 orderIndex, uint256 considerationIndex ); /** * @dev Revert with an error when providing a criteria resolver that refers * to an order with an offer item that has not been supplied. */ error OfferCriteriaResolverOutOfRange(); /** * @dev Revert with an error when providing a criteria resolver that refers * to an order with a consideration item that has not been supplied. */ error ConsiderationCriteriaResolverOutOfRange(); /** * @dev Revert with an error when providing a criteria resolver that refers * to an order with an item that does not expect a criteria to be * resolved. */ error CriteriaNotEnabledForItem(); /** * @dev Revert with an error when providing a criteria resolver that * contains an invalid proof with respect to the given item and * chosen identifier. */ error InvalidProof(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title AmountDerivationErrors * @author 0age * @notice AmountDerivationErrors contains errors related to amount derivation. */ interface AmountDerivationErrors { /** * @dev Revert with an error when attempting to apply a fraction as part of * a partial fill that does not divide the target amount cleanly. */ error InexactFraction(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ConduitInterface } from "seaport-types/src/interfaces/ConduitInterface.sol"; import { ConduitItemType } from "seaport-types/src/conduit/lib/ConduitEnums.sol"; import { ItemType } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { ReceivedItem } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { Verifiers } from "./Verifiers.sol"; import { TokenTransferrer } from "./TokenTransferrer.sol"; import { Accumulator_array_length_ptr, Accumulator_array_offset_ptr, Accumulator_array_offset, Accumulator_conduitKey_ptr, Accumulator_itemSizeOffsetDifference, Accumulator_selector_ptr, AccumulatorArmed, AccumulatorDisarmed, Conduit_transferItem_amount_ptr, Conduit_transferItem_from_ptr, Conduit_transferItem_identifier_ptr, Conduit_transferItem_size, Conduit_transferItem_to_ptr, Conduit_transferItem_token_ptr, FreeMemoryPointerSlot, OneWord, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { Error_selector_offset, NativeTokenTransferGenericFailure_error_account_ptr, NativeTokenTransferGenericFailure_error_amount_ptr, NativeTokenTransferGenericFailure_error_length, NativeTokenTransferGenericFailure_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; import { _revertInvalidCallToConduit, _revertInvalidConduit, _revertInvalidERC721TransferAmount, _revertUnusedItemParameters } from "seaport-types/src/lib/ConsiderationErrors.sol"; /** * @title Executor * @author 0age * @notice Executor contains functions related to processing executions (i.e. * transferring items, either directly or via conduits). */ contract Executor is Verifiers, TokenTransferrer { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Verifiers(conduitController) {} /** * @dev Internal function to transfer a given item, either directly or via * a corresponding conduit. * * @param item The item to transfer, including an amount and a * recipient. * @param from The account supplying the item. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transfer( ReceivedItem memory item, address from, bytes32 conduitKey, bytes memory accumulator ) internal { // If the item type indicates Ether or a native token... if (item.itemType == ItemType.NATIVE) { // Ensure neither the token nor the identifier parameters are set. if ((uint160(item.token) | item.identifier) != 0) { _revertUnusedItemParameters(); } // transfer the native tokens to the recipient. _transferNativeTokens(item.recipient, item.amount); } else if (item.itemType == ItemType.ERC20) { // Ensure that no identifier is supplied. if (item.identifier != 0) { _revertUnusedItemParameters(); } // Transfer ERC20 tokens from the source to the recipient. _transferERC20( item.token, from, item.recipient, item.amount, conduitKey, accumulator ); } else if (item.itemType == ItemType.ERC721) { // Transfer ERC721 token from the source to the recipient. _transferERC721( item.token, from, item.recipient, item.identifier, item.amount, conduitKey, accumulator ); } else { // Transfer ERC1155 token from the source to the recipient. _transferERC1155( item.token, from, item.recipient, item.identifier, item.amount, conduitKey, accumulator ); } } /** * @dev Internal function to transfer Ether or other native tokens to a * given recipient. * * @param to The recipient of the transfer. * @param amount The amount to transfer. */ function _transferNativeTokens( address payable to, uint256 amount ) internal { // Ensure that the supplied amount is non-zero. _assertNonZeroAmount(amount); // Declare a variable indicating whether the call was successful or not. bool success; assembly { // Transfer the native token and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } // If the call fails... if (!success) { // Revert and pass the revert reason along if one was returned. _revertWithReasonIfOneIsReturned(); // Otherwise, revert with a generic error message. assembly { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, NativeTokenTransferGenericFailure_error_selector) // Write `to` and `amount` arguments. mstore(NativeTokenTransferGenericFailure_error_account_ptr, to) mstore( NativeTokenTransferGenericFailure_error_amount_ptr, amount ) // revert(abi.encodeWithSignature( // "NativeTokenTransferGenericFailure(address,uint256)", // to, // amount // )) revert( Error_selector_offset, NativeTokenTransferGenericFailure_error_length ) } } } /** * @dev Internal function to transfer ERC20 tokens from a given originator * to a given recipient using a given conduit if applicable. Sufficient * approvals must be set on this contract or on a respective conduit. * * @param token The ERC20 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param amount The amount to transfer. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC20( address token, address from, address to, uint256 amount, bytes32 conduitKey, bytes memory accumulator ) internal { // Ensure that the supplied amount is non-zero. _assertNonZeroAmount(amount); // Trigger accumulated transfers if the conduits differ. _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey); // If no conduit has been specified... if (conduitKey == bytes32(0)) { // Perform the token transfer directly. _performERC20Transfer(token, from, to, amount); } else { // Insert the call to the conduit into the accumulator. _insert( conduitKey, accumulator, ConduitItemType.ERC20, token, from, to, uint256(0), amount ); } } /** * @dev Internal function to transfer a single ERC721 token from a given * originator to a given recipient. Sufficient approvals must be set, * either on the respective conduit or on this contract itself. * * @param token The ERC721 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. * @param amount The amount to transfer (must be 1 for ERC721). * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC721( address token, address from, address to, uint256 identifier, uint256 amount, bytes32 conduitKey, bytes memory accumulator ) internal { // Trigger accumulated transfers if the conduits differ. _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey); // If no conduit has been specified... if (conduitKey == bytes32(0)) { // Ensure that exactly one 721 item is being transferred. if (amount != 1) { _revertInvalidERC721TransferAmount(amount); } // Perform transfer via the token contract directly. _performERC721Transfer(token, from, to, identifier); } else { // Insert the call to the conduit into the accumulator. _insert( conduitKey, accumulator, ConduitItemType.ERC721, token, from, to, identifier, amount ); } } /** * @dev Internal function to transfer ERC1155 tokens from a given originator * to a given recipient. Sufficient approvals must be set, either on * the respective conduit or on this contract itself. * * @param token The ERC1155 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The id to transfer. * @param amount The amount to transfer. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _transferERC1155( address token, address from, address to, uint256 identifier, uint256 amount, bytes32 conduitKey, bytes memory accumulator ) internal { // Ensure that the supplied amount is non-zero. _assertNonZeroAmount(amount); // Trigger accumulated transfers if the conduits differ. _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey); // If no conduit has been specified... if (conduitKey == bytes32(0)) { // Perform transfer via the token contract directly. _performERC1155Transfer(token, from, to, identifier, amount); } else { // Insert the call to the conduit into the accumulator. _insert( conduitKey, accumulator, ConduitItemType.ERC1155, token, from, to, identifier, amount ); } } /** * @dev Internal function to trigger a call to the conduit currently held by * the accumulator if the accumulator contains item transfers (i.e. it * is "armed") and the supplied conduit key does not match the key held * by the accumulator. * * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. */ function _triggerIfArmedAndNotAccumulatable( bytes memory accumulator, bytes32 conduitKey ) internal { // Retrieve the current conduit key from the accumulator. bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator); // Perform conduit call if the set key does not match the supplied key. if (accumulatorConduitKey != conduitKey) { _triggerIfArmed(accumulator); } } /** * @dev Internal function to trigger a call to the conduit currently held by * the accumulator if the accumulator contains item transfers (i.e. it * is "armed"). * * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _triggerIfArmed(bytes memory accumulator) internal { // Exit if the accumulator is not "armed". if (accumulator.length != AccumulatorArmed) { return; } // Retrieve the current conduit key from the accumulator. bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator); // Perform conduit call. _trigger(accumulatorConduitKey, accumulator); } /** * @dev Internal function to trigger a call to the conduit corresponding to * a given conduit key, supplying all accumulated item transfers. The * accumulator will be "disarmed" and reset in the process. * * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. */ function _trigger(bytes32 conduitKey, bytes memory accumulator) internal { // Declare variables for offset in memory & size of calldata to conduit. uint256 callDataOffset; uint256 callDataSize; // Call the conduit with all the accumulated transfers. assembly { // Call begins at third word; the first is length or "armed" status, // and the second is the current conduit key. callDataOffset := add(accumulator, TwoWords) // 68 + items * 192 callDataSize := add( Accumulator_array_offset_ptr, mul( mload(add(accumulator, Accumulator_array_length_ptr)), Conduit_transferItem_size ) ) } // Call conduit derived from conduit key & supply accumulated transfers. _callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize); // Reset accumulator length to signal that it is now "disarmed". assembly { mstore(accumulator, AccumulatorDisarmed) } } /** * @dev Internal function to perform a call to the conduit corresponding to * a given conduit key based on the offset and size of the calldata in * question in memory. * * @param conduitKey A bytes32 value indicating what corresponding * conduit, if any, to source token approvals from. * The zero hash signifies that no conduit should be * used, with direct approvals set on this contract. * @param callDataOffset The memory pointer where calldata is contained. * @param callDataSize The size of calldata in memory. */ function _callConduitUsingOffsets( bytes32 conduitKey, uint256 callDataOffset, uint256 callDataSize ) internal { // Derive the address of the conduit using the conduit key. address conduit = _deriveConduit(conduitKey); bool success; bytes4 result; // call the conduit. assembly { // Ensure first word of scratch space is empty. mstore(0, 0) // Perform call, placing first word of return data in scratch space. success := call( gas(), conduit, 0, callDataOffset, callDataSize, 0, OneWord ) // Take value from scratch space and place it on the stack. result := mload(0) } // If the call failed... if (!success) { // Pass along whatever revert reason was given by the conduit. _revertWithReasonIfOneIsReturned(); // Otherwise, revert with a generic error. _revertInvalidCallToConduit(conduit); } // Ensure result was extracted and matches magic value. if (result != ConduitInterface.execute.selector) { _revertInvalidConduit(conduitKey, conduit); } } /** * @dev Internal pure function to retrieve the current conduit key set for * the accumulator. * * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. * * @return accumulatorConduitKey The conduit key currently set for the * accumulator. */ function _getAccumulatorConduitKey( bytes memory accumulator ) internal pure returns (bytes32 accumulatorConduitKey) { // Retrieve the current conduit key from the accumulator. assembly { accumulatorConduitKey := mload( add(accumulator, Accumulator_conduitKey_ptr) ) } } /** * @dev Internal pure function to place an item transfer into an accumulator * that collects a series of transfers to execute against a given * conduit in a single call. * * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. The zero hash * signifies that no conduit should be used, with direct * approvals set on this contract. * @param accumulator An open-ended array that collects transfers to execute * against a given conduit in a single call. * @param itemType The type of the item to transfer. * @param token The token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. * @param amount The amount to transfer. */ function _insert( bytes32 conduitKey, bytes memory accumulator, ConduitItemType itemType, address token, address from, address to, uint256 identifier, uint256 amount ) internal pure { uint256 elements; // "Arm" and prime accumulator if it's not already armed. The sentinel // value is held in the length of the accumulator array. if (accumulator.length == AccumulatorDisarmed) { elements = 1; bytes4 selector = ConduitInterface.execute.selector; assembly { mstore(accumulator, AccumulatorArmed) // "arm" the accumulator. mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey) mstore(add(accumulator, Accumulator_selector_ptr), selector) mstore( add(accumulator, Accumulator_array_offset_ptr), Accumulator_array_offset ) mstore(add(accumulator, Accumulator_array_length_ptr), elements) } } else { // Otherwise, increase the number of elements by one. assembly { elements := add( mload(add(accumulator, Accumulator_array_length_ptr)), 1 ) mstore(add(accumulator, Accumulator_array_length_ptr), elements) } } // Insert the item. assembly { let itemPointer := sub( add(accumulator, mul(elements, Conduit_transferItem_size)), Accumulator_itemSizeOffsetDifference ) mstore(itemPointer, itemType) mstore(add(itemPointer, Conduit_transferItem_token_ptr), token) mstore(add(itemPointer, Conduit_transferItem_from_ptr), from) mstore(add(itemPointer, Conduit_transferItem_to_ptr), to) mstore( add(itemPointer, Conduit_transferItem_identifier_ptr), identifier ) mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { OrderType } from "seaport-types/src/lib/ConsiderationEnums.sol"; import { AdvancedOrder, BasicOrderParameters, OrderParameters } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { ZoneInteractionErrors } from "seaport-types/src/interfaces/ZoneInteractionErrors.sol"; import { LowLevelHelpers } from "./LowLevelHelpers.sol"; import { ConsiderationEncoder } from "./ConsiderationEncoder.sol"; import { CalldataPointer, MemoryPointer, OffsetOrLengthMask, ZeroSlotPtr } from "seaport-types/src/helpers/PointerLibraries.sol"; import { authorizeOrder_selector_offset, BasicOrder_zone_cdPtr, ContractOrder_orderHash_offerer_shift, MaskOverFirstFourBytes, OneWord, OrderParameters_salt_offset, OrderParameters_zone_offset, validateOrder_selector_offset } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { Error_selector_offset, InvalidContractOrder_error_selector, InvalidRestrictedOrder_error_length, InvalidRestrictedOrder_error_orderHash_ptr, InvalidRestrictedOrder_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; /** * @title ZoneInteraction * @author 0age * @notice ZoneInteraction contains logic related to interacting with zones. */ contract ZoneInteraction is ConsiderationEncoder, ZoneInteractionErrors, LowLevelHelpers { /** * @dev Internal function to determine if an order has a restricted order * type and, if so, to ensure that either the zone is the caller or * that a call to `validateOrder` on the zone returns a magic value * indicating that the order is currently valid. Note that contract * orders are not accessible via the basic fulfillment method. * * @param orderHash The hash of the order. * @param orderType The order type. */ function _assertRestrictedBasicOrderAuthorization( bytes32 orderHash, OrderType orderType ) internal returns (uint256 callDataPointer) { // Order type 2-3 require zone be caller or zone to approve. // Note that in cases where fulfiller == zone, the restricted order // validation will be skipped. if ( _isRestrictedAndCallerNotZone( orderType, CalldataPointer.wrap(BasicOrder_zone_cdPtr).readAddress() ) ) { // Encode the `authorizeOrder` call in memory. ( MemoryPointer callData, uint256 size, uint256 memoryLocationForOrderHashes ) = _encodeAuthorizeBasicOrder(orderHash); // Write the error selector to memory at the zero slot where it can // be used to revert with a specific error message. ZeroSlotPtr.write(InvalidRestrictedOrder_error_selector); // Perform `authorizeOrder` call & ensure magic value was returned. _callAndCheckStatus( CalldataPointer.wrap(BasicOrder_zone_cdPtr).readAddress(), orderHash, callData.offset(authorizeOrder_selector_offset), size ); // Restore the zero slot. ZeroSlotPtr.write(0); // Register the calldata pointer for the encoded calldata. callDataPointer = MemoryPointer.unwrap(callData); // Utilize unchecked logic as size value cannot be so large as to // cause an overflow. unchecked { // Write the packed encoding of size and memory location for // order hashes to memory at the head of the encoded calldata. callData.write( ((size + OneWord) << 128) | memoryLocationForOrderHashes ); } } } /** * @dev Internal function to determine if an order has a restricted order * type and, if so, to ensure that either the zone is the caller or * that a call to `validateOrder` on the zone returns a magic value * indicating that the order is currently valid. Note that contract * orders are not accessible via the basic fulfillment method. * * @param orderHash The hash of the order. * @param orderType The order type. * @param callDataPtr The pointer to the call data for the basic order. * Note that the initial value will contain the size * and the memory location for order hashes length. */ function _assertRestrictedBasicOrderValidity( bytes32 orderHash, OrderType orderType, uint256 callDataPtr ) internal { // Order type 2-3 require zone be caller or zone to approve. // Note that in cases where fulfiller == zone, the restricted order // validation will be skipped. if ( _isRestrictedAndCallerNotZone( orderType, CalldataPointer.wrap(BasicOrder_zone_cdPtr).readAddress() ) ) { // Cast the call data pointer to a memory pointer. MemoryPointer callData = MemoryPointer.wrap(callDataPtr); // Retrieve the size and memory location for order hashes from the // head of the encoded calldata where it was previously written. uint256 sizeAndMemoryLocationForOrderHashes = ( callData.readUint256() ); // Split the packed encoding to retrieve size and memory location. uint256 size = sizeAndMemoryLocationForOrderHashes >> 128; uint256 memoryLocationForOrderHashes = ( sizeAndMemoryLocationForOrderHashes & OffsetOrLengthMask ); // Encode the `validateOrder` call in memory. _encodeValidateBasicOrder(callData, memoryLocationForOrderHashes); // Account for the offset of the selector in the encoded call data. callData = callData.offset(validateOrder_selector_offset); // Write the error selector to memory at the zero slot where it can // be used to revert with a specific error message. ZeroSlotPtr.write(InvalidRestrictedOrder_error_selector); // Perform `validateOrder` call and ensure magic value was returned. _callAndCheckStatus( CalldataPointer.wrap(BasicOrder_zone_cdPtr).readAddress(), orderHash, callData, size ); // Restore the zero slot. ZeroSlotPtr.write(0); } } /** * @dev Internal function to determine the pre-execution validity of * restricted orders, signaling whether or not the order is valid. * Restricted orders where the caller is not the zone must * successfully call `authorizeOrder` with the correct magic value * returned. * * @param advancedOrder The advanced order in question. * @param orderHashes The order hashes of each order included as part * of the current fulfillment. * @param orderHash The hash of the order. * @param orderIndex The index of the order. * @param revertOnInvalid Whether to revert if the call is invalid. * * @return isValid True if the order is valid, false otherwise (unless * revertOnInvalid is true, in which case this function * will revert). */ function _checkRestrictedAdvancedOrderAuthorization( AdvancedOrder memory advancedOrder, bytes32[] memory orderHashes, bytes32 orderHash, uint256 orderIndex, bool revertOnInvalid ) internal returns (bool isValid) { // Retrieve the parameters of the order in question. OrderParameters memory parameters = advancedOrder.parameters; // OrderType 2-3 require zone to be caller or approve via validateOrder. if ( _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone) ) { // Encode the `validateOrder` call in memory. (MemoryPointer callData, uint256 size) = _encodeAuthorizeOrder( orderHash, parameters, advancedOrder.extraData, orderHashes, orderIndex ); // Perform call and ensure a corresponding magic value was returned. return _callAndCheckStatusWithSkip( parameters.zone, orderHash, callData, size, InvalidRestrictedOrder_error_selector, revertOnInvalid ); } return true; } /** * @dev Internal function to determine the pre-execution validity of * restricted orders and to revert if the order is invalid. * Restricted orders where the caller is not the zone must * successfully call `authorizeOrder` with the correct magic value * returned. * * @param advancedOrder The advanced order in question. * @param orderHashes The order hashes of each order included as part * of the current fulfillment. * @param orderHash The hash of the order. * @param orderIndex The index of the order. */ function _assertRestrictedAdvancedOrderAuthorization( AdvancedOrder memory advancedOrder, bytes32[] memory orderHashes, bytes32 orderHash, uint256 orderIndex ) internal { // Retrieve the parameters of the order in question. OrderParameters memory parameters = advancedOrder.parameters; // OrderType 2-3 requires zone to call or approve via authorizeOrder. if ( _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone) ) { // Encode the `authorizeOrder` call in memory. (MemoryPointer callData, uint256 size) = _encodeAuthorizeOrder( orderHash, parameters, advancedOrder.extraData, orderHashes, orderIndex ); // Write the error selector to memory at the zero slot where it can // be used to revert with a specific error message. ZeroSlotPtr.write(InvalidRestrictedOrder_error_selector); // Perform call and ensure a corresponding magic value was returned. _callAndCheckStatus(parameters.zone, orderHash, callData, size); // Restore the zero slot. ZeroSlotPtr.write(0); } } /** * @dev Internal function to determine the post-execution validity of * restricted and contract orders. Restricted orders where the caller * is not the zone must successfully call `validateOrder` with the * correct magic value returned. Contract orders must successfully call * `ratifyOrder` with the correct magic value returned. * * @param advancedOrder The advanced order in question. * @param orderHashes The order hashes of each order included as part of * the current fulfillment. * @param orderHash The hash of the order. */ function _assertRestrictedAdvancedOrderValidity( AdvancedOrder memory advancedOrder, bytes32[] memory orderHashes, bytes32 orderHash ) internal { // Declare variables that will be assigned based on the order type. address target; uint256 errorSelector; MemoryPointer callData; uint256 size; // Retrieve the parameters of the order in question. OrderParameters memory parameters = advancedOrder.parameters; // OrderType 2-3 require zone to be caller or approve via validateOrder. if ( _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone) ) { // Encode the `validateOrder` call in memory. (callData, size) = _encodeValidateOrder( parameters .toMemoryPointer() .offset(OrderParameters_salt_offset) .readUint256(), orderHashes ); // Set the target to the zone. target = ( parameters .toMemoryPointer() .offset(OrderParameters_zone_offset) .readAddress() ); // Set the restricted-order-specific error selector. errorSelector = InvalidRestrictedOrder_error_selector; } else if (parameters.orderType == OrderType.CONTRACT) { // Set the target to the offerer (note the offerer has no offset). target = parameters.toMemoryPointer().readAddress(); // Shift the target 96 bits to the left. uint256 shiftedOfferer; assembly { shiftedOfferer := shl( ContractOrder_orderHash_offerer_shift, target ) } // Encode the `ratifyOrder` call in memory. (callData, size) = _encodeRatifyOrder( orderHash, parameters, advancedOrder.extraData, orderHashes, shiftedOfferer ); // Set the contract-order-specific error selector. errorSelector = InvalidContractOrder_error_selector; } else { return; } // Write the error selector to memory at the zero slot where it can be // used to revert with a specific error message. ZeroSlotPtr.write(errorSelector); // Perform call and ensure a corresponding magic value was returned. _callAndCheckStatus(target, orderHash, callData, size); // Restore the zero slot. ZeroSlotPtr.write(0); } /** * @dev Determines whether the specified order type is restricted and the * caller is not the specified zone. * * @param orderType The type of the order to check. * @param zone The address of the zone to check against. * * @return mustValidate True if the order type is restricted and the caller * is not the specified zone, false otherwise. */ function _isRestrictedAndCallerNotZone( OrderType orderType, address zone ) internal view returns (bool mustValidate) { // Utilize assembly to efficiently perform the check. assembly { mustValidate := and( // Note that this check requires that there are no order // types beyond the current set (0-4). It will need to be // modified if more order types are added. and(lt(orderType, 4), gt(orderType, 1)), iszero(eq(caller(), zone)) ) } } /** * @dev Calls the specified target with the given data and checks the status * of the call. Revert reasons will be "bubbled up" if one is returned, * otherwise reverting calls will throw a generic error based on the * supplied error handler. Note that the custom error selector must * already be in memory at the zero slot when this function is called. * * @param target The address of the contract to call. * @param orderHash The hash of the order associated with the call. * @param callData The data to pass to the contract call. * @param size The size of calldata. */ function _callAndCheckStatus( address target, bytes32 orderHash, MemoryPointer callData, uint256 size ) internal { bool success; bool magicMatch; assembly { // Get magic value from the selector at start of provided calldata. let magic := and(mload(callData), MaskOverFirstFourBytes) // Clear the start of scratch space. mstore(0, 0) // Perform call, placing result in the first word of scratch space. success := call(gas(), target, 0, callData, size, 0, OneWord) // Determine if returned magic value matches the calldata selector. magicMatch := eq(magic, mload(0)) } // Revert if the call was not successful. if (!success) { // Revert and pass reason along if one was returned. _revertWithReasonIfOneIsReturned(); // If no reason was returned, revert with supplied error selector. assembly { // The error selector is already in memory at the zero slot. mstore(0x80, orderHash) // revert(abi.encodeWithSelector( // "InvalidRestrictedOrder(bytes32)", // orderHash // )) revert(0x7c, InvalidRestrictedOrder_error_length) } } // Revert if the correct magic value was not returned. if (!magicMatch) { // Revert with a generic error message. assembly { // The error selector is already in memory at the zero slot. mstore(0x80, orderHash) // revert(abi.encodeWithSelector( // "InvalidRestrictedOrder(bytes32)", // orderHash // )) revert(0x7c, InvalidRestrictedOrder_error_length) } } } /** * @dev Calls the specified target with the given data and checks the status * of the call. Revert reasons will be "bubbled up" if one is returned, * otherwise reverting calls will throw a generic error based on the * supplied error handler. * * @param target The address of the contract to call. * @param orderHash The hash of the order associated with the call. * @param callData The data to pass to the contract call. * @param size The size of calldata. * @param errorSelector The error handling function to call if the call * fails or the magic value does not match. * @param revertOnInvalid Whether to revert if the call is invalid. Must * still revert if the call returns invalid data. */ function _callAndCheckStatusWithSkip( address target, bytes32 orderHash, MemoryPointer callData, uint256 size, uint256 errorSelector, bool revertOnInvalid ) internal returns (bool) { bool success; bool magicMatch; assembly { // Get magic value from the selector at start of provided calldata. let magic := and(mload(callData), MaskOverFirstFourBytes) // Clear the start of scratch space. mstore(0, 0) // Perform call, placing result in the first word of scratch space. success := call(gas(), target, 0, callData, size, 0, OneWord) // Determine if returned magic value matches the calldata selector. magicMatch := eq(magic, mload(0)) } // Revert or return false if the call was not successful. if (!success) { if (!revertOnInvalid) { return false; } // Revert and pass reason along if one was returned. _revertWithReasonIfOneIsReturned(); // If no reason was returned, revert with supplied error selector. assembly { mstore(0, errorSelector) mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSelector( // "InvalidRestrictedOrder(bytes32)", // orderHash // )) revert( Error_selector_offset, InvalidRestrictedOrder_error_length ) } } // Revert if the correct magic value was not returned. if (!magicMatch) { // Revert with a generic error message. assembly { mstore(0, errorSelector) mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash) // revert(abi.encodeWithSelector( // "InvalidRestrictedOrder(bytes32)", // orderHash // )) revert( Error_selector_offset, InvalidRestrictedOrder_error_length ) } } return true; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { ConduitBatch1155Transfer, ConduitTransfer } from "../conduit/lib/ConduitStructs.sol"; /** * @title ConduitInterface * @author 0age * @notice ConduitInterface contains all external function interfaces, events, * and errors for conduit contracts. */ interface ConduitInterface { /** * @dev Revert with an error when attempting to execute transfers using a * caller that does not have an open channel. */ error ChannelClosed(address channel); /** * @dev Revert with an error when attempting to update a channel to the * current status of that channel. */ error ChannelStatusAlreadySet(address channel, bool isOpen); /** * @dev Revert with an error when attempting to execute a transfer for an * item that does not have an ERC20/721/1155 item type. */ error InvalidItemType(); /** * @dev Revert with an error when attempting to update the status of a * channel from a caller that is not the conduit controller. */ error InvalidController(); /** * @dev Emit an event whenever a channel is opened or closed. * * @param channel The channel that has been updated. * @param open A boolean indicating whether the conduit is open or not. */ event ChannelUpdated(address indexed channel, bool open); /** * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller * with an open channel can call this function. * * @param transfers The ERC20/721/1155 transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function execute( ConduitTransfer[] calldata transfers ) external returns (bytes4 magicValue); /** * @notice Execute a sequence of batch 1155 transfers. Only a caller with an * open channel can call this function. * * @param batch1155Transfers The 1155 batch transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function executeBatch1155( ConduitBatch1155Transfer[] calldata batch1155Transfers ) external returns (bytes4 magicValue); /** * @notice Execute a sequence of transfers, both single and batch 1155. Only * a caller with an open channel can call this function. * * @param standardTransfers The ERC20/721/1155 transfers to perform. * @param batch1155Transfers The 1155 batch transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function executeWithBatch1155( ConduitTransfer[] calldata standardTransfers, ConduitBatch1155Transfer[] calldata batch1155Transfers ) external returns (bytes4 magicValue); /** * @notice Open or close a given channel. Only callable by the controller. * * @param channel The channel to open or close. * @param isOpen The status of the channel (either open or closed). */ function updateChannel(address channel, bool isOpen) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; enum ConduitItemType { NATIVE, // unused ERC20, ERC721, ERC1155 }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { OrderStatus } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { Assertions } from "./Assertions.sol"; import { SignatureVerification } from "./SignatureVerification.sol"; import { _revertInvalidTime, _revertOrderAlreadyFilled, _revertOrderIsCancelled, _revertOrderPartiallyFilled } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { BulkOrderProof_keyShift, BulkOrderProof_keySize, BulkOrderProof_lengthAdjustmentBeforeMask, BulkOrderProof_lengthRangeAfterMask, BulkOrderProof_minSize, BulkOrderProof_rangeSize, ECDSA_MaxLength, OneWord, OneWordShift, ThirtyOneBytes, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; /** * @title Verifiers * @author 0age * @notice Verifiers contains functions for performing verifications. */ contract Verifiers is Assertions, SignatureVerification { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) Assertions(conduitController) {} /** * @dev Internal view function to ensure that the current time falls within * an order's valid timespan. * * @param startTime The time at which the order becomes active. * @param endTime The time at which the order becomes inactive. * @param revertOnInvalid A boolean indicating whether to revert if the * order is not active. * * @return valid A boolean indicating whether the order is active. */ function _verifyTime( uint256 startTime, uint256 endTime, bool revertOnInvalid ) internal view returns (bool valid) { // Mark as valid if order has started and has not already ended. assembly { valid := and( iszero(gt(startTime, timestamp())), gt(endTime, timestamp()) ) } // Only revert on invalid if revertOnInvalid has been supplied as true. if (revertOnInvalid && !valid) { _revertInvalidTime(startTime, endTime); } } /** * @dev Internal view function to verify the signature of an order. An * ERC-1271 fallback will be attempted if either the signature length * is not 64 or 65 bytes or if the recovered signer does not match the * supplied offerer. Note that in cases where a 64 or 65 byte signature * is supplied, only standard ECDSA signatures that recover to a * non-zero address are supported. * * @param offerer The offerer for the order. * @param orderHash The order hash. * @param signature A signature from the offerer indicating that the order * has been approved. */ function _verifySignature( address offerer, bytes32 orderHash, bytes memory signature ) internal view { // Determine whether the offerer is the caller. bool offererIsCaller; assembly { offererIsCaller := eq(offerer, caller()) } // Skip signature verification if the offerer is the caller. if (offererIsCaller) { return; } // Derive the EIP-712 domain separator. bytes32 domainSeparator = _domainSeparator(); // Derive original EIP-712 digest using domain separator and order hash. bytes32 originalDigest = _deriveEIP712Digest( domainSeparator, orderHash ); // Read the length of the signature from memory and place on the stack. uint256 originalSignatureLength = signature.length; // Determine effective digest if signature has a valid bulk order size. bytes32 digest; if (_isValidBulkOrderSize(originalSignatureLength)) { // Rederive order hash and digest using bulk order proof. (orderHash) = _computeBulkOrderProof(signature, orderHash); digest = _deriveEIP712Digest(domainSeparator, orderHash); } else { // Supply the original digest as the effective digest. digest = originalDigest; } // Ensure that the signature for the digest is valid for the offerer. _assertValidSignature( offerer, digest, originalDigest, originalSignatureLength, signature ); } /** * @dev Determines whether the specified bulk order size is valid. * * @param signatureLength The signature length of the bulk order to check. * * @return validLength True if bulk order size is valid, false otherwise. */ function _isValidBulkOrderSize( uint256 signatureLength ) internal pure returns (bool validLength) { // Utilize assembly to validate the length; the equivalent logic is // (64 + x) + 3 + 32y where (0 <= x <= 1) and (1 <= y <= 24). assembly { validLength := and( lt( sub(signatureLength, BulkOrderProof_minSize), BulkOrderProof_rangeSize ), lt( and( add( signatureLength, BulkOrderProof_lengthAdjustmentBeforeMask ), ThirtyOneBytes ), BulkOrderProof_lengthRangeAfterMask ) ) } } /** * @dev Computes the bulk order hash for the specified proof and leaf. Note * that if an index that exceeds the number of orders in the bulk order * payload will instead "wrap around" and refer to an earlier index. * * @param proofAndSignature The proof and signature of the bulk order. * @param leaf The leaf of the bulk order tree. * * @return bulkOrderHash The bulk order hash. */ function _computeBulkOrderProof( bytes memory proofAndSignature, bytes32 leaf ) internal pure returns (bytes32 bulkOrderHash) { // Declare arguments for the root hash and the height of the proof. bytes32 root; uint256 height; // Utilize assembly to efficiently derive the root hash using the proof. assembly { // Retrieve the length of the proof, key, and signature combined. let fullLength := mload(proofAndSignature) // If proofAndSignature has odd length, it is a compact signature // with 64 bytes. let signatureLength := sub(ECDSA_MaxLength, and(fullLength, 1)) // Derive height (or depth of tree) with signature and proof length. height := shr(OneWordShift, sub(fullLength, signatureLength)) // Update the length in memory to only include the signature. mstore(proofAndSignature, signatureLength) // Derive the pointer for the key using the signature length. let keyPtr := add(proofAndSignature, add(OneWord, signatureLength)) // Retrieve the three-byte key using the derived pointer. let key := shr(BulkOrderProof_keyShift, mload(keyPtr)) /// Retrieve pointer to first proof element by applying a constant // for the key size to the derived key pointer. let proof := add(keyPtr, BulkOrderProof_keySize) // Compute level 1. let scratchPtr1 := shl(OneWordShift, and(key, 1)) mstore(scratchPtr1, leaf) mstore(xor(scratchPtr1, OneWord), mload(proof)) // Compute remaining proofs. for { let i := 1 } lt(i, height) { i := add(i, 1) } { proof := add(proof, OneWord) let scratchPtr := shl(OneWordShift, and(shr(i, key), 1)) mstore(scratchPtr, keccak256(0, TwoWords)) mstore(xor(scratchPtr, OneWord), mload(proof)) } // Compute root hash. root := keccak256(0, TwoWords) } // Retrieve appropriate typehash constant based on height. bytes32 rootTypeHash = _lookupBulkOrderTypehash(height); // Use the typehash and the root hash to derive final bulk order hash. assembly { mstore(0, rootTypeHash) mstore(OneWord, root) bulkOrderHash := keccak256(0, TwoWords) } } /** * @dev Internal view function to validate that a given order is fillable * and not cancelled based on the order status. * * @param orderHash The order hash. * @param orderStatus The status of the order, including whether it has * been cancelled and the fraction filled. * @param onlyAllowUnused A boolean flag indicating whether partial fills * are supported by the calling function. * @param revertOnInvalid A boolean indicating whether to revert if the * order has been cancelled or filled beyond the * allowable amount. * * @return valid A boolean indicating whether the order is valid. */ function _verifyOrderStatus( bytes32 orderHash, OrderStatus storage orderStatus, bool onlyAllowUnused, bool revertOnInvalid ) internal view returns (bool valid) { // Ensure that the order has not been cancelled. if (orderStatus.isCancelled) { // Only revert if revertOnInvalid has been supplied as true. if (revertOnInvalid) { _revertOrderIsCancelled(orderHash); } // Return false as the order status is invalid. return false; } // Read order status numerator from storage and place on stack. uint256 orderStatusNumerator = orderStatus.numerator; // If the order is not entirely unused... if (orderStatusNumerator != 0) { // ensure the order has not been partially filled when not allowed. if (onlyAllowUnused) { // Always revert on partial fills when onlyAllowUnused is true. _revertOrderPartiallyFilled(orderHash); } // Otherwise, ensure that order has not been entirely filled. else if (orderStatusNumerator >= orderStatus.denominator) { // Only revert if revertOnInvalid has been supplied as true. if (revertOnInvalid) { _revertOrderAlreadyFilled(orderHash); } // Return false as the order status is invalid. return false; } } // Return true as the order status is valid. valid = true; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.14; import { BadReturnValueFromERC20OnTransfer_error_amount_ptr, BadReturnValueFromERC20OnTransfer_error_from_ptr, BadReturnValueFromERC20OnTransfer_error_length, BadReturnValueFromERC20OnTransfer_error_selector, BadReturnValueFromERC20OnTransfer_error_to_ptr, BadReturnValueFromERC20OnTransfer_error_token_ptr, BatchTransfer1155Params_amounts_head_ptr, BatchTransfer1155Params_calldata_baseSize, BatchTransfer1155Params_data_head_ptr, BatchTransfer1155Params_data_length_basePtr, BatchTransfer1155Params_ids_head_ptr, BatchTransfer1155Params_ids_length_offset, BatchTransfer1155Params_ids_length_ptr, BatchTransfer1155Params_ptr, ConduitBatch1155Transfer_amounts_length_baseOffset, ConduitBatch1155Transfer_from_offset, ConduitBatch1155Transfer_ids_head_offset, ConduitBatch1155Transfer_ids_length_offset, ConduitBatch1155Transfer_usable_head_size, ConduitBatchTransfer_amounts_head_offset, CostPerWord, DefaultFreeMemoryPointer, ERC1155_safeBatchTransferFrom_signature, ERC1155_safeTransferFrom_amount_ptr, ERC1155_safeTransferFrom_data_length_offset, ERC1155_safeTransferFrom_data_length_ptr, ERC1155_safeTransferFrom_data_offset_ptr, ERC1155_safeTransferFrom_from_ptr, ERC1155_safeTransferFrom_id_ptr, ERC1155_safeTransferFrom_length, ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_signature, ERC1155_safeTransferFrom_to_ptr, ERC1155BatchTransferGenericFailure_error_signature, ERC1155BatchTransferGenericFailure_ids_offset, ERC1155BatchTransferGenericFailure_token_ptr, ERC20_transferFrom_amount_ptr, ERC20_transferFrom_from_ptr, ERC20_transferFrom_length, ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature, ERC20_transferFrom_to_ptr, ERC721_transferFrom_from_ptr, ERC721_transferFrom_id_ptr, ERC721_transferFrom_length, ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature, ERC721_transferFrom_to_ptr, ExtraGasBuffer, FreeMemoryPointerSlot, Generic_error_selector_offset, Invalid1155BatchTransferEncoding_length, Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_selector, MemoryExpansionCoefficientShift, NoContract_error_account_ptr, NoContract_error_length, NoContract_error_selector, OneWord, OneWordShift, Slot0x80, Slot0xA0, Slot0xC0, ThirtyOneBytes, TokenTransferGenericFailure_err_identifier_ptr, TokenTransferGenericFailure_error_amount_ptr, TokenTransferGenericFailure_error_from_ptr, TokenTransferGenericFailure_error_identifier_ptr, TokenTransferGenericFailure_error_length, TokenTransferGenericFailure_error_selector, TokenTransferGenericFailure_error_to_ptr, TokenTransferGenericFailure_error_token_ptr, TwoWords, TwoWordsShift, ZeroSlot } from "seaport-types/src/lib/TokenTransferrerConstants.sol"; import { TokenTransferrerErrors } from "seaport-types/src/interfaces/TokenTransferrerErrors.sol"; import { ConduitBatch1155Transfer } from "seaport-types/src/conduit/lib/ConduitStructs.sol"; /** * @title TokenTransferrer * @author 0age * @custom:coauthor d1ll0n * @custom:coauthor transmissions11 * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721, * ERC1155, and batch ERC1155 transfers, used by both Seaport as well as * by conduits deployed by the ConduitController. Use great caution when * considering these functions for use in other codebases, as there are * significant side effects and edge cases that need to be thoroughly * understood and carefully addressed. */ contract TokenTransferrer is TokenTransferrerErrors { /** * @dev Internal function to transfer ERC20 tokens from a given originator * to a given recipient. Sufficient approvals must be set on the * contract performing the transfer. * * @param token The ERC20 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param amount The amount to transfer. */ function _performERC20Transfer( address token, address from, address to, uint256 amount ) internal { // Utilize assembly to perform an optimized ERC20 token transfer. assembly { // The free memory pointer memory slot will be used when populating // call data for the transfer; read the value and restore it later. let memPointer := mload(FreeMemoryPointerSlot) // Write call data into memory, starting with function selector. mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature) mstore(ERC20_transferFrom_from_ptr, from) mstore(ERC20_transferFrom_to_ptr, to) mstore(ERC20_transferFrom_amount_ptr, amount) // Make call & copy up to 32 bytes of return data to scratch space. // Scratch space does not need to be cleared ahead of time, as the // subsequent check will ensure that either at least a full word of // return data is received (in which case it will be overwritten) or // that no data is received (in which case scratch space will be // ignored) on a successful call to the given token. let callStatus := call( gas(), token, 0, ERC20_transferFrom_sig_ptr, ERC20_transferFrom_length, 0, OneWord ) // Determine whether transfer was successful using status & result. let success := and( // Set success to whether the call reverted, if not check it // either returned exactly 1 (can't just be non-zero data), // or had no return data. or( and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize()) ), callStatus ) // Handle cases where either the transfer failed or no data was // returned. Group these, as most transfers will succeed with data. // Equivalent to `or(iszero(success), iszero(returndatasize()))` // but after it's inverted for JUMPI this expression is cheaper. if iszero(and(success, iszero(iszero(returndatasize())))) { // If the token has no code or the transfer failed: Equivalent // to `or(iszero(success), iszero(extcodesize(token)))` but // after it's inverted for JUMPI this expression is cheaper. if iszero(and(iszero(iszero(extcodesize(token))), success)) { // If the transfer failed: if iszero(success) { // If it was due to a revert: if iszero(callStatus) { // If it returned a message, bubble it up as long as // sufficient gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to // copy returndata while expanding memory where // necessary. Start by computing the word size // of returndata and allocated memory. Round up // to the nearest full word. let returnDataWords := shr( OneWordShift, add(returndatasize(), ThirtyOneBytes) ) // Note: use the free memory pointer in place of // msize() to work around a Yul warning that // prevents accessing msize directly when the IR // pipeline is activated. let msizeWords := shr(OneWordShift, memPointer) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub( returnDataWords, msizeWords ), CostPerWord ), shr( MemoryExpansionCoefficientShift, sub( mul( returnDataWords, returnDataWords ), mul(msizeWords, msizeWords) ) ) ) ) } // Finally, add a small constant and compare to // gas remaining; bubble up the revert data if // enough gas is still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite // existing memory. returndatacopy(0, 0, returndatasize()) // Revert, specifying memory region with // copied returndata. revert(0, returndatasize()) } } // Store left-padded selector with push4, mem[28:32] mstore( 0, TokenTransferGenericFailure_error_selector ) mstore( TokenTransferGenericFailure_error_token_ptr, token ) mstore( TokenTransferGenericFailure_error_from_ptr, from ) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore( TokenTransferGenericFailure_err_identifier_ptr, 0 ) mstore( TokenTransferGenericFailure_error_amount_ptr, amount ) // revert(abi.encodeWithSignature( // "TokenTransferGenericFailure( // address,address,address,uint256,uint256 // )", token, from, to, identifier, amount // )) revert( Generic_error_selector_offset, TokenTransferGenericFailure_error_length ) } // Otherwise revert with a message about the token // returning false or non-compliant return values. // Store left-padded selector with push4, mem[28:32] mstore( 0, BadReturnValueFromERC20OnTransfer_error_selector ) mstore( BadReturnValueFromERC20OnTransfer_error_token_ptr, token ) mstore( BadReturnValueFromERC20OnTransfer_error_from_ptr, from ) mstore( BadReturnValueFromERC20OnTransfer_error_to_ptr, to ) mstore( BadReturnValueFromERC20OnTransfer_error_amount_ptr, amount ) // revert(abi.encodeWithSignature( // "BadReturnValueFromERC20OnTransfer( // address,address,address,uint256 // )", token, from, to, amount // )) revert( Generic_error_selector_offset, BadReturnValueFromERC20OnTransfer_error_length ) } // Otherwise, revert with error about token not having code: // Store left-padded selector with push4, mem[28:32] mstore(0, NoContract_error_selector) mstore(NoContract_error_account_ptr, token) // revert(abi.encodeWithSignature( // "NoContract(address)", account // )) revert( Generic_error_selector_offset, NoContract_error_length ) } // Otherwise, the token just returned no data despite the call // having succeeded; no need to optimize for this as it's not // technically ERC20 compliant. } // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer an ERC721 token from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer. Note that this function does * not check whether the receiver can accept the ERC721 token (i.e. it * does not use `safeTransferFrom`). * * @param token The ERC721 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. */ function _performERC721Transfer( address token, address from, address to, uint256 identifier ) internal { // Utilize assembly to perform an optimized ERC721 token transfer. assembly { // If the token has no code, revert. if iszero(extcodesize(token)) { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, NoContract_error_selector) mstore(NoContract_error_account_ptr, token) // revert(abi.encodeWithSignature( // "NoContract(address)", account // )) revert(Generic_error_selector_offset, NoContract_error_length) } // The free memory pointer memory slot will be used when populating // call data for the transfer; read the value and restore it later. let memPointer := mload(FreeMemoryPointerSlot) // Write call data to memory starting with function selector. mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature) mstore(ERC721_transferFrom_from_ptr, from) mstore(ERC721_transferFrom_to_ptr, to) mstore(ERC721_transferFrom_id_ptr, identifier) // Perform the call, ignoring return data. let success := call( gas(), token, 0, ERC721_transferFrom_sig_ptr, ERC721_transferFrom_length, 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as sufficient // gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. Start // by computing word size of returndata & allocated memory. // Round up to the nearest full word. let returnDataWords := shr( OneWordShift, add(returndatasize(), ThirtyOneBytes) ) // Note: use the free memory pointer in place of msize() to // work around a Yul warning that prevents accessing msize // directly when the IR pipeline is activated. let msizeWords := shr(OneWordShift, memPointer) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), shr( MemoryExpansionCoefficientShift, sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ) ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, giving memory region with copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. // Store left-padded selector with push4, mem[28:32] = selector mstore(0, TokenTransferGenericFailure_error_selector) mstore(TokenTransferGenericFailure_error_token_ptr, token) mstore(TokenTransferGenericFailure_error_from_ptr, from) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore( TokenTransferGenericFailure_error_identifier_ptr, identifier ) mstore(TokenTransferGenericFailure_error_amount_ptr, 1) // revert(abi.encodeWithSignature( // "TokenTransferGenericFailure( // address,address,address,uint256,uint256 // )", token, from, to, identifier, amount // )) revert( Generic_error_selector_offset, TokenTransferGenericFailure_error_length ) } // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer ERC1155 tokens from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer and contract recipients must * implement the ERC1155TokenReceiver interface to indicate that they * are willing to accept the transfer. * * @param token The ERC1155 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The id to transfer. * @param amount The amount to transfer. */ function _performERC1155Transfer( address token, address from, address to, uint256 identifier, uint256 amount ) internal { // Utilize assembly to perform an optimized ERC1155 token transfer. assembly { // If the token has no code, revert. if iszero(extcodesize(token)) { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, NoContract_error_selector) mstore(NoContract_error_account_ptr, token) // revert(abi.encodeWithSignature( // "NoContract(address)", account // )) revert(Generic_error_selector_offset, NoContract_error_length) } // The following memory slots will be used when populating call data // for the transfer; read the values and restore them later. let memPointer := mload(FreeMemoryPointerSlot) let slot0x80 := mload(Slot0x80) let slot0xA0 := mload(Slot0xA0) let slot0xC0 := mload(Slot0xC0) // Write call data into memory, beginning with function selector. mstore( ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_signature ) mstore(ERC1155_safeTransferFrom_from_ptr, from) mstore(ERC1155_safeTransferFrom_to_ptr, to) mstore(ERC1155_safeTransferFrom_id_ptr, identifier) mstore(ERC1155_safeTransferFrom_amount_ptr, amount) mstore( ERC1155_safeTransferFrom_data_offset_ptr, ERC1155_safeTransferFrom_data_length_offset ) mstore(ERC1155_safeTransferFrom_data_length_ptr, 0) // Perform the call, ignoring return data. let success := call( gas(), token, 0, ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_length, 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as sufficient // gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. Start // by computing word size of returndata & allocated memory. // Round up to the nearest full word. let returnDataWords := shr( OneWordShift, add(returndatasize(), ThirtyOneBytes) ) // Note: use the free memory pointer in place of msize() to // work around a Yul warning that prevents accessing msize // directly when the IR pipeline is activated. let msizeWords := shr(OneWordShift, memPointer) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), shr( MemoryExpansionCoefficientShift, sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ) ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, giving memory region with copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. // Store left-padded selector with push4, mem[28:32] = selector mstore(0, TokenTransferGenericFailure_error_selector) mstore(TokenTransferGenericFailure_error_token_ptr, token) mstore(TokenTransferGenericFailure_error_from_ptr, from) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore( TokenTransferGenericFailure_error_identifier_ptr, identifier ) mstore(TokenTransferGenericFailure_error_amount_ptr, amount) // revert(abi.encodeWithSignature( // "TokenTransferGenericFailure( // address,address,address,uint256,uint256 // )", token, from, to, identifier, amount // )) revert( Generic_error_selector_offset, TokenTransferGenericFailure_error_length ) } mstore(Slot0x80, slot0x80) // Restore slot 0x80. mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0. mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0. // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer ERC1155 tokens from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer and contract recipients must * implement the ERC1155TokenReceiver interface to indicate that they * are willing to accept the transfer. NOTE: this function is not * memory-safe; it will overwrite existing memory, restore the free * memory pointer to the default value, and overwrite the zero slot. * This function should only be called once memory is no longer * required and when uninitialized arrays are not utilized, and memory * should be considered fully corrupted (aside from the existence of a * default-value free memory pointer) after calling this function. * * @param batchTransfers The group of 1155 batch transfers to perform. */ function _performERC1155BatchTransfers( ConduitBatch1155Transfer[] calldata batchTransfers ) internal { // Utilize assembly to perform optimized batch 1155 transfers. assembly { let len := batchTransfers.length // Pointer to first head in the array, which is offset to the struct // at each index. This gets incremented after each loop to avoid // multiplying by 32 to get the offset for each element. let nextElementHeadPtr := batchTransfers.offset // Pointer to beginning of the head of the array. This is the // reference position each offset references. It's held static to // let each loop calculate the data position for an element. let arrayHeadPtr := nextElementHeadPtr // Write the function selector, which will be reused for each call: // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes) mstore( ConduitBatch1155Transfer_from_offset, ERC1155_safeBatchTransferFrom_signature ) // Iterate over each batch transfer. for { let i := 0 } lt(i, len) { i := add(i, 1) } { // Read the offset to the beginning of the element and add // it to pointer to the beginning of the array head to get // the absolute position of the element in calldata. let elementPtr := add( arrayHeadPtr, calldataload(nextElementHeadPtr) ) // Retrieve the token from calldata. let token := calldataload(elementPtr) // If the token has no code, revert. if iszero(extcodesize(token)) { // Store left-padded selector with push4, mem[28:32] mstore(0, NoContract_error_selector) mstore(NoContract_error_account_ptr, token) // revert(abi.encodeWithSignature( // "NoContract(address)", account // )) revert( Generic_error_selector_offset, NoContract_error_length ) } // Get the total number of supplied ids. let idsLength := calldataload( add(elementPtr, ConduitBatch1155Transfer_ids_length_offset) ) // Determine the expected offset for the amounts array. let expectedAmountsOffset := add( ConduitBatch1155Transfer_amounts_length_baseOffset, shl(OneWordShift, idsLength) ) // Validate struct encoding. let invalidEncoding := iszero( and( // ids.length == amounts.length eq( idsLength, calldataload(add(elementPtr, expectedAmountsOffset)) ), and( // ids_offset == 0xa0 eq( calldataload( add( elementPtr, ConduitBatch1155Transfer_ids_head_offset ) ), ConduitBatch1155Transfer_ids_length_offset ), // amounts_offset == 0xc0 + ids.length*32 eq( calldataload( add( elementPtr, ConduitBatchTransfer_amounts_head_offset ) ), expectedAmountsOffset ) ) ) ) // Revert with an error if the encoding is not valid. if invalidEncoding { // Store left-padded selector with push4, mem[28:32] mstore( Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_selector ) // revert(abi.encodeWithSignature( // "Invalid1155BatchTransferEncoding()" // )) revert( Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_length ) } // Update the offset position for the next loop nextElementHeadPtr := add(nextElementHeadPtr, OneWord) // Copy the first section of calldata (before dynamic values). calldatacopy( BatchTransfer1155Params_ptr, add(elementPtr, ConduitBatch1155Transfer_from_offset), ConduitBatch1155Transfer_usable_head_size ) // Determine size of calldata required for ids and amounts. Note // that the size includes both lengths as well as the data. let idsAndAmountsSize := add( TwoWords, shl(TwoWordsShift, idsLength) ) // Update the offset for the data array in memory. mstore( BatchTransfer1155Params_data_head_ptr, add( BatchTransfer1155Params_ids_length_offset, idsAndAmountsSize ) ) // Set the length of the data array in memory to zero. mstore( add( BatchTransfer1155Params_data_length_basePtr, idsAndAmountsSize ), 0 ) // Determine the total calldata size for the call to transfer. let transferDataSize := add( BatchTransfer1155Params_calldata_baseSize, idsAndAmountsSize ) // Copy second section of calldata (including dynamic values). calldatacopy( BatchTransfer1155Params_ids_length_ptr, add(elementPtr, ConduitBatch1155Transfer_ids_length_offset), idsAndAmountsSize ) // Perform the call to transfer 1155 tokens. let success := call( gas(), token, 0, ConduitBatch1155Transfer_from_offset, // Data start. transferDataSize, // Location of the length of callData. 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as // sufficient gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. // Start by computing word size of returndata and // allocated memory. Round up to the nearest full word. let returnDataWords := shr( OneWordShift, add(returndatasize(), ThirtyOneBytes) ) // Note: use transferDataSize in place of msize() to // work around a Yul warning that prevents accessing // msize directly when the IR pipeline is activated. // The free memory pointer is not used here because // this function does almost all memory management // manually and does not update it, and transferDataSize // should be the largest memory value used (unless a // previous batch was larger). let msizeWords := shr(OneWordShift, transferDataSize) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), shr( MemoryExpansionCoefficientShift, sub( mul( returnDataWords, returnDataWords ), mul(msizeWords, msizeWords) ) ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing. returndatacopy(0, 0, returndatasize()) // Revert with memory region containing returndata. revert(0, returndatasize()) } } // Set the error signature. mstore( 0, ERC1155BatchTransferGenericFailure_error_signature ) // Write the token. mstore(ERC1155BatchTransferGenericFailure_token_ptr, token) // Increase the offset to ids by 32. mstore( BatchTransfer1155Params_ids_head_ptr, ERC1155BatchTransferGenericFailure_ids_offset ) // Increase the offset to amounts by 32. mstore( BatchTransfer1155Params_amounts_head_ptr, add( OneWord, mload(BatchTransfer1155Params_amounts_head_ptr) ) ) // Return modified region. The total size stays the same as // `token` uses the same number of bytes as `data.length`. revert(0, transferDataSize) } } // Reset the free memory pointer to the default value; memory must // be assumed to be dirtied and not reused from this point forward. // Also note that the zero slot is not reset to zero, meaning empty // arrays cannot be safely created or utilized until it is restored. mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title ZoneInteractionErrors * @author 0age * @notice ZoneInteractionErrors contains errors related to zone interaction. */ interface ZoneInteractionErrors { /** * @dev Revert with an error when attempting to fill an order that specifies * a restricted submitter as its order type when not submitted by * either the offerer or the order's zone or approved as valid by the * zone in question via a call to `isValidOrder`. * * @param orderHash The order hash for the invalid restricted order. */ error InvalidRestrictedOrder(bytes32 orderHash); /** * @dev Revert with an error when attempting to fill a contract order that * fails to generate an order successfully, that does not adhere to the * requirements for minimum spent or maximum received supplied by the * fulfiller, or that fails the post-execution `ratifyOrder` check.. * * @param orderHash The order hash for the invalid contract order. */ error InvalidContractOrder(bytes32 orderHash); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { CostPerWord, ExtraGasBuffer, FreeMemoryPointerSlot, MemoryExpansionCoefficientShift, OneWord, OneWordShift, ThirtyOneBytes } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { MemoryPointer, MemoryPointerLib } from "seaport-types/src/helpers/PointerLibraries.sol"; import { AdvancedOrder, Execution } from "seaport-types/src/lib/ConsiderationStructs.sol"; /** * @title LowLevelHelpers * @author 0age * @notice LowLevelHelpers contains logic for performing various low-level * operations. */ contract LowLevelHelpers { /** * @dev Internal view function to revert and pass along the revert reason if * data was returned by the last call and that the size of that data * does not exceed the currently allocated memory size. */ function _revertWithReasonIfOneIsReturned() internal view { assembly { // If it returned a message, bubble it up as long as sufficient gas // remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy returndata // while expanding memory where necessary. Start by computing // the word size of returndata and allocated memory. let returnDataWords := shr( OneWordShift, add(returndatasize(), ThirtyOneBytes) ) // Note: use the free memory pointer in place of msize() to work // around a Yul warning that prevents accessing msize directly // when the IR pipeline is activated. let msizeWords := shr( OneWordShift, mload(FreeMemoryPointerSlot) ) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul(sub(returnDataWords, msizeWords), CostPerWord), shr( MemoryExpansionCoefficientShift, sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ) ) ) ) } // Finally, add a small constant and compare to gas remaining; // bubble up the revert data if enough gas is still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, specifying memory region with copied returndata. revert(0, returndatasize()) } } } } /** * @dev Internal view function to branchlessly select either the caller (if * a supplied recipient is equal to zero) or the supplied recipient (if * that recipient is a nonzero value). * * @param recipient The supplied recipient. * * @return updatedRecipient The updated recipient. */ function _substituteCallerForEmptyRecipient( address recipient ) internal view returns (address updatedRecipient) { // Utilize assembly to perform a branchless operation on the recipient. assembly { // Add caller to recipient if recipient equals 0; otherwise add 0. updatedRecipient := add(recipient, mul(iszero(recipient), caller())) } } /** * @dev Internal pure function to cast a `bool` value to a `uint256` value. * * @param b The `bool` value to cast. * * @return u The `uint256` value. */ function _cast(bool b) internal pure returns (uint256 u) { assembly { u := b } } /** * @dev Internal pure function to cast the `pptrOffset` function from * `MemoryPointerLib` to a function that takes a memory array of * `AdvancedOrder` and an offset in memory and returns the * `AdvancedOrder` whose pointer is stored at that offset from the * array length. */ function _getReadAdvancedOrderByOffset() internal pure returns ( function(AdvancedOrder[] memory, uint256) internal pure returns (AdvancedOrder memory) fn2 ) { function(MemoryPointer, uint256) internal pure returns (MemoryPointer) fn1 = MemoryPointerLib.pptrOffset; assembly { fn2 := fn1 } } /** * @dev Internal pure function to cast the `pptrOffset` function from * `MemoryPointerLib` to a function that takes a memory array of * `Execution` and an offset in memory and returns the * `Execution` whose pointer is stored at that offset from the * array length. */ function _getReadExecutionByOffset() internal pure returns ( function(Execution[] memory, uint256) internal pure returns (Execution memory) fn2 ) { function(MemoryPointer, uint256) internal pure returns (MemoryPointer) fn1 = MemoryPointerLib.pptrOffset; assembly { fn2 := fn1 } } /** * @dev Internal pure function to return a `true` value that solc * will not recognize as a compile time constant. * * This function is used to bypass function specialization for * functions which take a constant boolean as an input parameter. * * This should only be used in cases where specialization has a * negligible impact on the gas cost of the function. * * Note: assumes the calldatasize is non-zero. */ function _runTimeConstantTrue() internal pure returns (bool) { return msg.data.length > 0; } /** * @dev Internal pure function to return a `false` value that solc * will not recognize as a compile time constant. * * This function is used to bypass function specialization for * functions which take a constant boolean as an input parameter. * * This should only be used in cases where specialization has a * negligible impact on the gas cost of the function. * * Note: assumes the calldatasize is non-zero. */ function _runTimeConstantFalse() internal pure returns (bool) { return msg.data.length == 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { authorizeOrder_calldata_baseOffset, authorizeOrder_head_offset, authorizeOrder_selector_offset, authorizeOrder_selector, authorizeOrder_zoneParameters_offset, BasicOrder_addlRecipients_length_cdPtr, BasicOrder_common_params_size, BasicOrder_consideration_offset_from_offer, BasicOrder_offerer_cdPtr, BasicOrder_startTime_cdPtr, BasicOrder_startTimeThroughZoneHash_size, BasicOrder_totalOriginalAdditionalRecipients_cdPtr, Common_amount_offset, Common_identifier_offset, Common_token_offset, generateOrder_base_tail_offset, generateOrder_context_head_offset, generateOrder_head_offset, generateOrder_maximumSpent_head_offset, generateOrder_minimumReceived_head_offset, generateOrder_selector_offset, generateOrder_selector, OneWord, OneWordShift, OnlyFullWordMask, OrderFulfilled_baseDataSize, OrderFulfilled_offer_length_baseOffset, OrderParameters_consideration_head_offset, OrderParameters_endTime_offset, OrderParameters_offer_head_offset, OrderParameters_startTime_offset, OrderParameters_zoneHash_offset, ratifyOrder_base_tail_offset, ratifyOrder_consideration_head_offset, ratifyOrder_context_head_offset, ratifyOrder_contractNonce_offset, ratifyOrder_head_offset, ratifyOrder_orderHashes_head_offset, ratifyOrder_selector_offset, ratifyOrder_selector, ReceivedItem_size, Selector_length, SixtyThreeBytes, SpentItem_size_shift, SpentItem_size, validateOrder_selector, validateOrder_selector_offset, ZoneParameters_base_tail_offset, ZoneParameters_basicOrderFixedElements_length, ZoneParameters_consideration_head_offset, ZoneParameters_endTime_offset, ZoneParameters_extraData_head_offset, ZoneParameters_fulfiller_offset, ZoneParameters_offer_head_offset, ZoneParameters_offerer_offset, ZoneParameters_orderHashes_head_offset, ZoneParameters_selectorAndPointer_length, ZoneParameters_startTime_offset, ZoneParameters_zoneHash_offset } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { BasicOrderParameters, OrderParameters } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { CalldataPointer, getFreeMemoryPointer, setFreeMemoryPointer, MemoryPointer, OffsetOrLengthMask } from "seaport-types/src/helpers/PointerLibraries.sol"; contract ConsiderationEncoder { /** * @dev Takes a bytes array and casts it to a memory pointer. * * @param obj A bytes array in memory. * * @return ptr A memory pointer to the start of the bytes array in memory. */ function toMemoryPointer( bytes memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Takes an array of bytes32 types and casts it to a memory pointer. * * @param obj An array of bytes32 types in memory. * * @return ptr A memory pointer to the start of the array of bytes32 types * in memory. */ function toMemoryPointer( bytes32[] memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Takes a bytes array in memory and copies it to a new location in * memory. * * @param src A memory pointer referencing the bytes array to be copied (and * pointing to the length of the bytes array). * @param src A memory pointer referencing the location in memory to copy * the bytes array to (and pointing to the length of the copied * bytes array). * * @return size The size of the bytes array. */ function _encodeBytes( MemoryPointer src, MemoryPointer dst ) internal view returns (uint256 size) { unchecked { // Mask the length of the bytes array to protect against overflow // and round up to the nearest word. // Note: `size` also includes the 1 word that stores the length. size = (src.readUint256() + SixtyThreeBytes) & OnlyFullWordMask; // Copy the bytes array to the new memory location. src.copy(dst, size); } } /** * @dev Takes an OrderParameters struct and a context bytes array in memory * and encodes it as `generateOrder` calldata. * * @param orderParameters The OrderParameters struct used to construct the * encoded `generateOrder` calldata. * @param context The context bytes array used to construct the * encoded `generateOrder` calldata. * * @return dst A memory pointer referencing the encoded `generateOrder` * calldata. * @return size The size of the bytes array. */ function _encodeGenerateOrder( OrderParameters memory orderParameters, bytes memory context ) internal view returns (MemoryPointer dst, uint256 size) { // Get the memory pointer for the OrderParameters struct. MemoryPointer src = orderParameters.toMemoryPointer(); // Get free memory pointer to write calldata to. dst = getFreeMemoryPointer(); // Write generateOrder selector and get pointer to start of calldata. dst.write(generateOrder_selector); dst = dst.offset(generateOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(generateOrder_head_offset); // Write `fulfiller` to calldata. dstHead.write(msg.sender); // Initialize tail offset, used to populate the minimumReceived array. uint256 tailOffset = generateOrder_base_tail_offset; // Write offset to minimumReceived. dstHead.offset(generateOrder_minimumReceived_head_offset).write( tailOffset ); // Get memory pointer to `orderParameters.offer.length`. MemoryPointer srcOfferPointer = src .offset(OrderParameters_offer_head_offset) .readMemoryPointer(); // Encode the offer array as a `SpentItem[]`. uint256 minimumReceivedSize = _encodeSpentItems( srcOfferPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate maximumSpent array. tailOffset += minimumReceivedSize; } // Write offset to maximumSpent. dstHead.offset(generateOrder_maximumSpent_head_offset).write( tailOffset ); // Get memory pointer to `orderParameters.consideration.length`. MemoryPointer srcConsiderationPointer = src .offset(OrderParameters_consideration_head_offset) .readMemoryPointer(); // Encode the consideration array as a `SpentItem[]`. uint256 maximumSpentSize = _encodeSpentItems( srcConsiderationPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate context array. tailOffset += maximumSpentSize; } // Write offset to context. dstHead.offset(generateOrder_context_head_offset).write(tailOffset); // Get memory pointer to context. MemoryPointer srcContext = toMemoryPointer(context); // Encode context as a bytes array. uint256 contextSize = _encodeBytes( srcContext, dstHead.offset(tailOffset) ); unchecked { // Increment the tail offset, now used to determine final size. tailOffset += contextSize; // Derive the final size by including the selector. size = Selector_length + tailOffset; } } /** * @dev Takes an order hash (e.g. offerer shifted 96 bits to the left XOR'd * with the contract nonce in the case of contract orders), an * OrderParameters struct, context bytes array, and an array of order * hashes for each order included as part of the current fulfillment * and encodes it as `ratifyOrder` calldata. * * @param orderHash The order hash (e.g. shl(0x60, offerer) ^ nonce). * @param orderParameters The OrderParameters struct used to construct the * encoded `ratifyOrder` calldata. * @param context The context bytes array used to construct the * encoded `ratifyOrder` calldata. * @param orderHashes An array of bytes32 values representing the order * hashes of all orders included as part of the * current fulfillment. * @param shiftedOfferer The offerer for the order, shifted 96 bits to the * left. * * @return dst A memory pointer referencing the encoded `ratifyOrder` * calldata. * @return size The size of the bytes array. */ function _encodeRatifyOrder( bytes32 orderHash, // e.g. shl(0x60, offerer) ^ contract nonce OrderParameters memory orderParameters, bytes memory context, // encoded based on the schemaID bytes32[] memory orderHashes, uint256 shiftedOfferer ) internal view returns (MemoryPointer dst, uint256 size) { // Get free memory pointer to write calldata to. This isn't allocated as // it is only used for a single function call. dst = getFreeMemoryPointer(); // Write ratifyOrder selector and get pointer to start of calldata. dst.write(ratifyOrder_selector); dst = dst.offset(ratifyOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(ratifyOrder_head_offset); // Write contractNonce to calldata via xor(orderHash, shiftedOfferer). dstHead.offset(ratifyOrder_contractNonce_offset).write( uint256(orderHash) ^ shiftedOfferer ); // Initialize tail offset, used to populate the offer array. uint256 tailOffset = ratifyOrder_base_tail_offset; MemoryPointer src = orderParameters.toMemoryPointer(); // Write offset to `offer`. dstHead.write(tailOffset); // Get memory pointer to `orderParameters.offer.length`. MemoryPointer srcOfferPointer = src .offset(OrderParameters_offer_head_offset) .readMemoryPointer(); // Encode the offer array as a `SpentItem[]`. uint256 offerSize = _encodeSpentItems( srcOfferPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate consideration array. tailOffset += offerSize; } // Write offset to consideration. dstHead.offset(ratifyOrder_consideration_head_offset).write(tailOffset); // Get pointer to `orderParameters.consideration.length`. MemoryPointer srcConsiderationPointer = src .offset(OrderParameters_consideration_head_offset) .readMemoryPointer(); // Encode the consideration array as a `ReceivedItem[]`. uint256 considerationSize = _encodeConsiderationAsReceivedItems( srcConsiderationPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate context array. tailOffset += considerationSize; } // Write offset to context. dstHead.offset(ratifyOrder_context_head_offset).write(tailOffset); // Encode context. uint256 contextSize = _encodeBytes( toMemoryPointer(context), dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate orderHashes array. tailOffset += contextSize; } // Write offset to orderHashes. dstHead.offset(ratifyOrder_orderHashes_head_offset).write(tailOffset); // Encode orderHashes. uint256 orderHashesSize = _encodeOrderHashes( toMemoryPointer(orderHashes), dstHead.offset(tailOffset) ); unchecked { // Increment the tail offset, now used to determine final size. tailOffset += orderHashesSize; // Derive the final size by including the selector. size = Selector_length + tailOffset; } } /** * @dev Takes an order hash, OrderParameters struct, extraData bytes array, * and array of order hashes for each order included as part of the * current fulfillment and encodes it as `authorizeOrder` calldata. * Note that future, new versions of this contract may end up writing * to a memory region that might have been potentially dirtied by the * accumulator. Since the book-keeping for the accumulator does not * update the free memory pointer, it will be necessary to ensure that * all bytes in the memory in the range [dst, dst+size) are fully * updated/written to in this function. * * @param orderHash The order hash. * @param orderParameters The OrderParameters struct used to construct the * encoded `authorizeOrder` calldata. * @param extraData The extraData bytes array used to construct the * encoded `authorizeOrder` calldata. * @param orderHashes An array of bytes32 values representing the order * hashes of all available orders validated thus far * as part of current fulfillment. * Note that this differs from the orderHashes array * passed to `validateOrder` in that the latter * includes *all* available and validated orders * in the final fulfillment, as it is only a subset * of the final fulfilled orderHashes. * * @return dst A memory pointer referencing the encoded `authorizeOrder` * calldata. * @return size The size of the bytes array. */ function _encodeAuthorizeOrder( bytes32 orderHash, OrderParameters memory orderParameters, bytes memory extraData, bytes32[] memory orderHashes, uint256 orderIndex ) internal view returns (MemoryPointer dst, uint256 size) { // Get free memory pointer to write calldata to. MemoryPointer ptr = getFreeMemoryPointer(); dst = ptr; // Write authorizeOrder selector and get pointer to start of calldata. dst.write(authorizeOrder_selector); dst = dst.offset(authorizeOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(authorizeOrder_head_offset); // Write offset to zoneParameters to start of calldata. dstHead.write(authorizeOrder_zoneParameters_offset); // Reuse `dstHead` as pointer to zoneParameters. dstHead = dstHead.offset(authorizeOrder_zoneParameters_offset); // Write orderHash and fulfiller to zoneParameters. dstHead.writeBytes32(orderHash); dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender); // Get the memory pointer to the order parameters struct. MemoryPointer src = orderParameters.toMemoryPointer(); // Copy offerer, startTime, endTime and zoneHash to zoneParameters. dstHead.offset(ZoneParameters_offerer_offset).write(src.readUint256()); dstHead.offset(ZoneParameters_startTime_offset).write( src.offset(OrderParameters_startTime_offset).readUint256() ); dstHead.offset(ZoneParameters_endTime_offset).write( src.offset(OrderParameters_endTime_offset).readUint256() ); dstHead.offset(ZoneParameters_zoneHash_offset).write( src.offset(OrderParameters_zoneHash_offset).readUint256() ); // Initialize tail offset, used to populate the offer array. uint256 tailOffset = ZoneParameters_base_tail_offset; // Write offset to `offer`. dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset); // Get pointer to `orderParameters.offer.length`. MemoryPointer srcOfferPointer = src .offset(OrderParameters_offer_head_offset) .readMemoryPointer(); // Encode the offer array as a `SpentItem[]`. uint256 offerSize = _encodeSpentItems( srcOfferPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate consideration array. tailOffset += offerSize; } // Write offset to consideration. dstHead.offset(ZoneParameters_consideration_head_offset).write( tailOffset ); // Get pointer to `orderParameters.consideration.length`. MemoryPointer srcConsiderationPointer = src .offset(OrderParameters_consideration_head_offset) .readMemoryPointer(); // Encode the consideration array as a `ReceivedItem[]`. uint256 considerationSize = _encodeConsiderationAsReceivedItems( srcConsiderationPointer, dstHead.offset(tailOffset) ); unchecked { // Increment tail offset, now used to populate extraData array. tailOffset += considerationSize; } // Write offset to extraData. dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset); unchecked { // Copy extraData. uint256 extraDataSize = _encodeBytes( toMemoryPointer(extraData), dstHead.offset(tailOffset) ); // Increment tail offset, now used to populate orderHashes array. tailOffset += extraDataSize; } // Write offset to orderHashes. dstHead.offset(ZoneParameters_orderHashes_head_offset).write( tailOffset ); // Encode the order hashes array. MemoryPointer orderHashesLengthLocation = dstHead.offset(tailOffset); unchecked { uint256 orderHashesSize = _encodeOrderHashes( toMemoryPointer(orderHashes), orderHashesLengthLocation ); // Increment the tail offset, now used to determine final size. tailOffset += orderHashesSize; // Derive final size including selector and ZoneParameters pointer. size = ZoneParameters_selectorAndPointer_length + tailOffset; } // Update the free memory pointer. setFreeMemoryPointer(dst.offset(size)); // Track the pointer, size (when performing validateOrder) and pointer // to orderHashes length by overriding the salt value on the order. orderParameters.salt = ((MemoryPointer.unwrap(ptr) << 128) | (size << 64) | MemoryPointer.unwrap(orderHashesLengthLocation)); // Write the shortened orderHashes array length. orderHashesLengthLocation.write(orderIndex); // Modify encoding size to account for the shorter orderHashes array. size -= (orderHashes.length - orderIndex) << OneWordShift; } /** * @dev Takes an order hash, OrderParameters struct, extraData bytes array, * and array of order hashes for each order included as part of the * current fulfillment and encodes it as `validateOrder` calldata. * Note that future, new versions of this contract may end up writing * to a memory region that might have been potentially dirtied by the * accumulator. Since the book-keeping for the accumulator does not * update the free memory pointer, it will be necessary to ensure that * all bytes in the memory in the range [dst, dst+size) are fully * updated/written to in this function. * * @param salt The salt on the order, which has been repurposed * to contain relevant pointers and encoding size. * @param orderHashes An array of bytes32 values representing the order * hashes of all orders included as part of the * current fulfillment. * * @return dst A memory pointer referencing the encoded `validateOrder` * calldata. * @return size The size of the bytes array. */ function _encodeValidateOrder( uint256 salt, bytes32[] memory orderHashes ) internal view returns (MemoryPointer dst, uint256 size) { dst = MemoryPointer.wrap(salt >> 128); size = (salt >> 64) & OffsetOrLengthMask; MemoryPointer orderHashesLengthLocation = MemoryPointer.wrap( salt & OffsetOrLengthMask ); // Write validateOrder selector. dst.write(validateOrder_selector); dst = dst.offset(validateOrder_selector_offset); // Encode the order hashes array. Note that this currently modifies // order hashes that are known to be properly encoded already and could // therefore be skipped. _encodeOrderHashes( toMemoryPointer(orderHashes), orderHashesLengthLocation ); } /** * @dev Takes an order hash and BasicOrderParameters struct (from calldata) * and encodes it as `authorizeOrder` calldata. Note that memory data * is reused from `OrderFulfilled` event data, and the rest of the * calldata is prefixed and postfixed to this memory region. Note that * the memory region before the spent and received items on the * `OrderFulfilled` event are overwritten, which implies that this * function will need to be modified should the layout of that event * data change in the future. * * @param orderHash The order hash. * * @return ptr A memory pointer referencing the encoded `authorizeOrder` * calldata with extra padding at the start to word align. * @return size The size of the bytes array. */ function _encodeAuthorizeBasicOrder( bytes32 orderHash ) internal view returns ( MemoryPointer ptr, uint256 size, uint256 memoryLocationForOrderHashes ) { unchecked { // Derive offset to pre `OrderFulfilled`'s spent item event data // using base offset & total original recipients. ptr = MemoryPointer.wrap( authorizeOrder_calldata_baseOffset + (CalldataPointer .wrap( BasicOrder_totalOriginalAdditionalRecipients_cdPtr ) .readUint256() << OneWordShift) ); } MemoryPointer dst = ptr; // Write authorizeOrder selector and get pointer to start of calldata. dst.write(authorizeOrder_selector); dst = dst.offset(authorizeOrder_selector_offset); // Get pointer to the beginning of the encoded data. MemoryPointer dstHead = dst.offset(authorizeOrder_head_offset); // Write offset to zoneParameters to start of calldata. dstHead.write(authorizeOrder_zoneParameters_offset); // Reuse `dstHead` as pointer to zoneParameters. dstHead = dstHead.offset(authorizeOrder_zoneParameters_offset); // Write offerer, orderHash and fulfiller to zoneParameters. dstHead.writeBytes32(orderHash); dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender); dstHead.offset(ZoneParameters_offerer_offset).write( CalldataPointer.wrap(BasicOrder_offerer_cdPtr).readAddress() ); // Copy startTime, endTime and zoneHash to zoneParameters. CalldataPointer.wrap(BasicOrder_startTime_cdPtr).copy( dstHead.offset(ZoneParameters_startTime_offset), BasicOrder_startTimeThroughZoneHash_size ); // Initialize tail offset, used for the offer + consideration arrays. uint256 tailOffset = ZoneParameters_base_tail_offset; // Write offset to offer from event data into target calldata. dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset); unchecked { // Write consideration offset next (located 5 words after offer). dstHead.offset(ZoneParameters_consideration_head_offset).write( tailOffset + BasicOrder_consideration_offset_from_offer ); // Retrieve the length of additional recipients. uint256 additionalRecipientsLength = CalldataPointer .wrap(BasicOrder_addlRecipients_length_cdPtr) .readUint256(); // Derive size of offer and consideration data. // 2 words (lengths) + 4 (offer data) + 5 (consideration 1) + 5 * ar uint256 offerAndConsiderationSize = OrderFulfilled_baseDataSize + (additionalRecipientsLength * ReceivedItem_size); // Increment tail offset, now used to populate extraData array. tailOffset += offerAndConsiderationSize; } // Write empty bytes for extraData. dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset); dstHead.offset(tailOffset).write(0); unchecked { // Increment tail offset, now used to populate orderHashes array. tailOffset += OneWord; } // Write offset to orderHashes. dstHead.offset(ZoneParameters_orderHashes_head_offset).write( tailOffset ); memoryLocationForOrderHashes = MemoryPointer.unwrap( dstHead.offset(tailOffset) ); // Write length = 0 to the orderHashes array. dstHead.offset(tailOffset).write(0); unchecked { // Write the single order hash to the orderHashes array. dstHead.offset(tailOffset + OneWord).writeBytes32(orderHash); // Final size: selector, ZoneParameters pointer, orderHashes & tail. size = ZoneParameters_basicOrderFixedElements_length + tailOffset; } } /** * @dev Takes pointers to already-encoded data and modifies it so that * it is properly formatted for a `validateOrder` call. * * @param dst A memory pointer referencing the * encoded `validateOrder` calldata. * @param memoryLocationForOrderHashes A memory pointer referencing where * to encode orderHashes length of 1. */ function _encodeValidateBasicOrder( MemoryPointer dst, uint256 memoryLocationForOrderHashes ) internal pure { // Write validateOrder selector and get pointer to start of calldata. dst.write(validateOrder_selector); // Write length = 1 to the orderHashes array. Note that size should now // be one word larger than the provided size. MemoryPointer.wrap(memoryLocationForOrderHashes).write(1); } /** * @dev Takes a memory pointer to an array of bytes32 values representing * the order hashes included as part of the fulfillment and a memory * pointer to a location to copy it to, and copies the source data to * the destination in memory. * * @param srcLength A memory pointer referencing the order hashes array to * be copied (and pointing to the length of the array). * @param dstLength A memory pointer referencing the location in memory to * copy the orderHashes array to (and pointing to the * length of the copied array). * * @return size The size of the order hashes array (including the length). */ function _encodeOrderHashes( MemoryPointer srcLength, MemoryPointer dstLength ) internal view returns (uint256 size) { // Read length of the array from source and write to destination. uint256 length = srcLength.readUint256(); dstLength.write(length); unchecked { // Determine head & tail size as one word per element in the array. uint256 headAndTailSize = length << OneWordShift; // Copy the tail starting from the next element of the source to the // next element of the destination. srcLength.next().copy(dstLength.next(), headAndTailSize); // Set size to the length of the tail plus one word for length. size = headAndTailSize + OneWord; } } /** * @dev Takes a memory pointer to an offer or consideration array and a * memory pointer to a location to copy it to, and copies the source * data to the destination in memory as a SpentItem array. * * @param srcLength A memory pointer referencing the offer or consideration * array to be copied as a SpentItem array (and pointing to * the length of the original array). * @param dstLength A memory pointer referencing the location in memory to * copy the offer array to (and pointing to the length of * the copied array). * * @return size The size of the SpentItem array (including the length). */ function _encodeSpentItems( MemoryPointer srcLength, MemoryPointer dstLength ) internal pure returns (uint256 size) { assembly { // Read length of the array from source and write to destination. let length := mload(srcLength) mstore(dstLength, length) // Get pointer to first item's head position in the array, // containing the item's pointer in memory. The head pointer will be // incremented until it reaches the tail position (start of the // array data). let mPtrHead := add(srcLength, OneWord) // Position in memory to write next item for calldata. Since // SpentItem has a fixed length, the array elements do not contain // head elements in calldata, they are concatenated together after // the array length. let cdPtrData := add(dstLength, OneWord) // Pointer to end of array head in memory. let mPtrHeadEnd := add(mPtrHead, shl(OneWordShift, length)) for { } lt(mPtrHead, mPtrHeadEnd) { } { // Read pointer to data for array element from head position. let mPtrTail := mload(mPtrHead) // Copy itemType, token, identifier, amount to calldata. mstore(cdPtrData, mload(mPtrTail)) mstore( add(cdPtrData, Common_token_offset), mload(add(mPtrTail, Common_token_offset)) ) mstore( add(cdPtrData, Common_identifier_offset), mload(add(mPtrTail, Common_identifier_offset)) ) mstore( add(cdPtrData, Common_amount_offset), mload(add(mPtrTail, Common_amount_offset)) ) mPtrHead := add(mPtrHead, OneWord) cdPtrData := add(cdPtrData, SpentItem_size) } size := add(OneWord, shl(SpentItem_size_shift, length)) } } /** * @dev Takes a memory pointer to an consideration array and a memory * pointer to a location to copy it to, and copies the source data to * the destination in memory as a ReceivedItem array. * * @param srcLength A memory pointer referencing the consideration array to * be copied as a ReceivedItem array (and pointing to the * length of the original array). * @param dstLength A memory pointer referencing the location in memory to * copy the consideration array to as a ReceivedItem array * (and pointing to the length of the new array). * * @return size The size of the ReceivedItem array (including the length). */ function _encodeConsiderationAsReceivedItems( MemoryPointer srcLength, MemoryPointer dstLength ) internal view returns (uint256 size) { unchecked { // Read length of the array from source and write to destination. uint256 length = srcLength.readUint256(); dstLength.write(length); // Get pointer to first item's head position in the array, // containing the item's pointer in memory. The head pointer will be // incremented until it reaches the tail position (start of the // array data). MemoryPointer srcHead = srcLength.next(); MemoryPointer srcHeadEnd = srcHead.offset(length << OneWordShift); // Position in memory to write next item for calldata. Since // ReceivedItem has a fixed length, the array elements do not // contain offsets in calldata, they are concatenated together after // the array length. MemoryPointer dstHead = dstLength.next(); while (srcHead.lt(srcHeadEnd)) { MemoryPointer srcTail = srcHead.pptr(); srcTail.copy(dstHead, ReceivedItem_size); srcHead = srcHead.next(); dstHead = dstHead.offset(ReceivedItem_size); } size = OneWord + (length * ReceivedItem_size); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { ConduitItemType } from "./ConduitEnums.sol"; /** * @dev A ConduitTransfer is a struct that contains the information needed for a * conduit to transfer an item from one address to another. */ struct ConduitTransfer { ConduitItemType itemType; address token; address from; address to; uint256 identifier; uint256 amount; } /** * @dev A ConduitBatch1155Transfer is a struct that contains the information * needed for a conduit to transfer a batch of ERC-1155 tokens from one * address to another. */ struct ConduitBatch1155Transfer { address token; address from; address to; uint256[] ids; uint256[] amounts; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { OrderParameters } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { GettersAndDerivers } from "./GettersAndDerivers.sol"; import { TokenTransferrerErrors } from "seaport-types/src/interfaces/TokenTransferrerErrors.sol"; import { CounterManager } from "./CounterManager.sol"; import { AdditionalRecipient_size_shift, AddressDirtyUpperBitThreshold, BasicOrder_additionalRecipients_head_cdPtr, BasicOrder_additionalRecipients_head_ptr, BasicOrder_addlRecipients_length_cdPtr, BasicOrder_basicOrderType_cdPtr, BasicOrder_basicOrderType_range, BasicOrder_considerationToken_cdPtr, BasicOrder_offerer_cdPtr, BasicOrder_offerToken_cdPtr, BasicOrder_parameters_cdPtr, BasicOrder_parameters_ptr, BasicOrder_signature_cdPtr, BasicOrder_signature_ptr, BasicOrder_zone_cdPtr } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { Error_selector_offset, MissingItemAmount_error_length, MissingItemAmount_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; import { _revertInvalidBasicOrderParameterEncoding, _revertMissingOriginalConsiderationItems } from "seaport-types/src/lib/ConsiderationErrors.sol"; /** * @title Assertions * @author 0age * @notice Assertions contains logic for making various assertions that do not * fit neatly within a dedicated semantic scope. */ contract Assertions is GettersAndDerivers, CounterManager, TokenTransferrerErrors { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor( address conduitController ) GettersAndDerivers(conduitController) {} /** * @dev Internal view function to ensure that the supplied consideration * array length on a given set of order parameters is not less than the * original consideration array length for that order and to retrieve * the current counter for a given order's offerer and zone and use it * to derive the order hash. * * @param orderParameters The parameters of the order to hash. * * @return The hash. */ function _assertConsiderationLengthAndGetOrderHash( OrderParameters memory orderParameters ) internal view returns (bytes32) { // Ensure supplied consideration array length is not less than original. _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength( orderParameters.consideration.length, orderParameters.totalOriginalConsiderationItems ); // Derive and return order hash using current counter for the offerer. return _deriveOrderHash( orderParameters, _getCounter(orderParameters.offerer) ); } /** * @dev Internal pure function to ensure that the supplied consideration * array length for an order to be fulfilled is not less than the * original consideration array length for that order. * * @param suppliedConsiderationItemTotal The number of consideration items * supplied when fulfilling the order. * @param originalConsiderationItemTotal The number of consideration items * supplied on initial order creation. */ function _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength( uint256 suppliedConsiderationItemTotal, uint256 originalConsiderationItemTotal ) internal pure { // Ensure supplied consideration array length is not less than original. if (suppliedConsiderationItemTotal < originalConsiderationItemTotal) { _revertMissingOriginalConsiderationItems(); } } /** * @dev Internal pure function to ensure that a given item amount is not * zero. * * @param amount The amount to check. */ function _assertNonZeroAmount(uint256 amount) internal pure { assembly { if iszero(amount) { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, MissingItemAmount_error_selector) // revert(abi.encodeWithSignature("MissingItemAmount()")) revert(Error_selector_offset, MissingItemAmount_error_length) } } } /** * @dev Internal pure function to validate calldata offsets for dynamic * types in BasicOrderParameters and other parameters. This ensures * that functions using the calldata object normally will be using the * same data as the assembly functions and that values that are bound * to a given range are within that range. Note that no parameters are * supplied as all basic order functions use the same calldata * encoding. */ function _assertValidBasicOrderParameters() internal pure { // Declare a boolean designating basic order parameter offset validity. bool validOffsets; // Utilize assembly in order to read offset data directly from calldata. assembly { /* * Checks: * 1. Order parameters struct offset == 0x20 * 2. Additional recipients arr offset == 0x240 * 3. Signature offset == 0x260 + (recipients.length * 0x40) * 4. BasicOrderType between 0 and 23 (i.e. < 24) * 5. Offerer, zone, offer token, and consideration token have no * upper dirty bits — each argument is type(uint160).max or less */ validOffsets := and( and( and( // Order parameters at cd 0x04 offset = 0x20. eq( calldataload(BasicOrder_parameters_cdPtr), BasicOrder_parameters_ptr ), // Additional recipients at cd 0x224 offset = 0x240. eq( calldataload( BasicOrder_additionalRecipients_head_cdPtr ), BasicOrder_additionalRecipients_head_ptr ) ), // Signature offset = 0x260 + recipients.length * 0x40. eq( // Load signature offset from calldata 0x244. calldataload(BasicOrder_signature_cdPtr), // Expected offset = start of recipients + len * 64. add( BasicOrder_signature_ptr, shl( // Each additional recipient length = 0x40. AdditionalRecipient_size_shift, // Additional recipients length at cd 0x264. calldataload( BasicOrder_addlRecipients_length_cdPtr ) ) ) ) ), and( // Ensure BasicOrderType parameter is less than 0x18. lt( // BasicOrderType parameter = calldata offset 0x124. calldataload(BasicOrder_basicOrderType_cdPtr), // Value should be less than 24. BasicOrder_basicOrderType_range ), // Ensure no dirty upper bits are present on offerer, // zone, offer token, or consideration token. lt( or( or( // Offerer parameter = calldata offset 0x84. calldataload(BasicOrder_offerer_cdPtr), // Zone parameter = calldata offset 0xa4. calldataload(BasicOrder_zone_cdPtr) ), or( // Offer token parameter = cd offset 0xc4. calldataload(BasicOrder_offerToken_cdPtr), // Consideration parameter = offset 0x24. calldataload( BasicOrder_considerationToken_cdPtr ) ) ), AddressDirtyUpperBitThreshold ) ) ) } // Revert with an error if basic order parameter offsets are invalid. if (!validOffsets) { _revertInvalidBasicOrderParameterEncoding(); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { SignatureVerificationErrors } from "seaport-types/src/interfaces/SignatureVerificationErrors.sol"; import { LowLevelHelpers } from "./LowLevelHelpers.sol"; import { ECDSA_MaxLength, ECDSA_signature_s_offset, ECDSA_signature_v_offset, ECDSA_twentySeventhAndTwentyEighthBytesSet, Ecrecover_args_size, Ecrecover_precompile, EIP1271_isValidSignature_calldata_baseLength, EIP1271_isValidSignature_digest_negativeOffset, EIP1271_isValidSignature_selector_negativeOffset, EIP1271_isValidSignature_selector, EIP1271_isValidSignature_signature_head_offset, EIP2098_allButHighestBitMask, MaxUint8, OneWord, Signature_lower_v } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { BadContractSignature_error_length, BadContractSignature_error_selector, BadSignatureV_error_length, BadSignatureV_error_selector, BadSignatureV_error_v_ptr, Error_selector_offset, InvalidSignature_error_length, InvalidSignature_error_selector, InvalidSigner_error_length, InvalidSigner_error_selector } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; /** * @title SignatureVerification * @author 0age * @notice SignatureVerification contains logic for verifying signatures. */ contract SignatureVerification is SignatureVerificationErrors, LowLevelHelpers { /** * @dev Internal view function to verify the signature of an order. An * ERC-1271 fallback will be attempted if either the signature length * is not 64 or 65 bytes or if the recovered signer does not match the * supplied signer. * * @param signer The signer for the order. * @param digest The digest to verify signature against. * @param originalDigest The original digest to verify signature * against. * @param originalSignatureLength The original signature length. * @param signature A signature from the signer indicating * that the order has been approved. */ function _assertValidSignature( address signer, bytes32 digest, bytes32 originalDigest, uint256 originalSignatureLength, bytes memory signature ) internal view { // Declare value for ecrecover equality or 1271 call success status. bool success; // Utilize assembly to perform optimized signature verification check. assembly { // Ensure that first word of scratch space is empty. mstore(0, 0) // Get the length of the signature. let signatureLength := mload(signature) // Get the pointer to the value preceding the signature length. // This will be used for temporary memory overrides - either the // signature head for isValidSignature or the digest for ecrecover. let wordBeforeSignaturePtr := sub(signature, OneWord) // Cache the current value behind the signature to restore it later. let cachedWordBeforeSignature := mload(wordBeforeSignaturePtr) // Declare lenDiff + recoveredSigner scope to manage stack pressure. { // Take the difference between the max ECDSA signature length // and the actual signature length. Overflow desired for any // values > 65. If the diff is not 0 or 1, it is not a valid // ECDSA signature - move on to EIP1271 check. let lenDiff := sub(ECDSA_MaxLength, signatureLength) // Declare variable for recovered signer. let recoveredSigner // If diff is 0 or 1, it may be an ECDSA signature. // Try to recover signer. if iszero(gt(lenDiff, 1)) { // Read the signature `s` value. let originalSignatureS := mload( add(signature, ECDSA_signature_s_offset) ) // Read the first byte of the word after `s`. If the // signature is 65 bytes, this will be the real `v` value. // If not, it will need to be modified - doing it this way // saves an extra condition. let v := byte( 0, mload(add(signature, ECDSA_signature_v_offset)) ) // If lenDiff is 1, parse 64-byte signature as ECDSA. if lenDiff { // Extract yParity from highest bit of vs and add 27 to // get v. v := add( shr(MaxUint8, originalSignatureS), Signature_lower_v ) // Extract canonical s from vs, all but the highest bit. // Temporarily overwrite the original `s` value in the // signature. mstore( add(signature, ECDSA_signature_s_offset), and( originalSignatureS, EIP2098_allButHighestBitMask ) ) } // Temporarily overwrite the signature length with `v` to // conform to the expected input for ecrecover. mstore(signature, v) // Temporarily overwrite the word before the length with // `digest` to conform to the expected input for ecrecover. mstore(wordBeforeSignaturePtr, digest) // Attempt to recover the signer for the given signature. Do // not check the call status as ecrecover will return a null // address if the signature is invalid. pop( staticcall( gas(), Ecrecover_precompile, // Call ecrecover precompile. wordBeforeSignaturePtr, // Use data memory location. Ecrecover_args_size, // Size of digest, v, r, and s. 0, // Write result to scratch space. OneWord // Provide size of returned result. ) ) // Restore cached word before signature. mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature) // Restore cached signature length. mstore(signature, signatureLength) // Restore cached signature `s` value. mstore( add(signature, ECDSA_signature_s_offset), originalSignatureS ) // Read the recovered signer from the buffer given as return // space for ecrecover. recoveredSigner := mload(0) } // Set success to true if the signature provided was a valid // ECDSA signature and the signer is not the null address. Use // gt instead of direct as success is used outside of assembly. success := and(eq(signer, recoveredSigner), gt(signer, 0)) } // If the signature was not verified with ecrecover, try EIP1271. if iszero(success) { // Reset the original signature length. mstore(signature, originalSignatureLength) // Temporarily overwrite the word before the signature length // and use it as the head of the signature input to // `isValidSignature`, which has a value of 64. mstore( wordBeforeSignaturePtr, EIP1271_isValidSignature_signature_head_offset ) // Get pointer to use for the selector of `isValidSignature`. let selectorPtr := sub( signature, EIP1271_isValidSignature_selector_negativeOffset ) // Cache the value currently stored at the selector pointer. let cachedWordOverwrittenBySelector := mload(selectorPtr) // Cache the value currently stored at the digest pointer. let cachedWordOverwrittenByDigest := mload( sub( signature, EIP1271_isValidSignature_digest_negativeOffset ) ) // Write the selector first, since it overlaps the digest. mstore(selectorPtr, EIP1271_isValidSignature_selector) // Next, write the original digest. mstore( sub( signature, EIP1271_isValidSignature_digest_negativeOffset ), originalDigest ) // Call signer with `isValidSignature` to validate signature. success := staticcall( gas(), signer, selectorPtr, add( originalSignatureLength, EIP1271_isValidSignature_calldata_baseLength ), 0, OneWord ) // Determine if the signature is valid on successful calls. if success { // If first word of scratch space does not contain EIP-1271 // signature selector, revert. if iszero(eq(mload(0), EIP1271_isValidSignature_selector)) { // Revert with bad 1271 signature if signer has code. if extcodesize(signer) { // Bad contract signature. // Store left-padded selector with push4, mem[28:32] mstore(0, BadContractSignature_error_selector) // revert(abi.encodeWithSignature( // "BadContractSignature()" // )) revert( Error_selector_offset, BadContractSignature_error_length ) } // Check if signature length was invalid. if gt(sub(ECDSA_MaxLength, signatureLength), 1) { // Revert with generic invalid signature error. // Store left-padded selector with push4, mem[28:32] mstore(0, InvalidSignature_error_selector) // revert(abi.encodeWithSignature( // "InvalidSignature()" // )) revert( Error_selector_offset, InvalidSignature_error_length ) } // Check if v was invalid. if and( eq(signatureLength, ECDSA_MaxLength), iszero( byte( byte( 0, mload( add( signature, ECDSA_signature_v_offset ) ) ), ECDSA_twentySeventhAndTwentyEighthBytesSet ) ) ) { // Revert with invalid v value. // Store left-padded selector with push4, mem[28:32] mstore(0, BadSignatureV_error_selector) mstore( BadSignatureV_error_v_ptr, byte( 0, mload( add(signature, ECDSA_signature_v_offset) ) ) ) // revert(abi.encodeWithSignature( // "BadSignatureV(uint8)", v // )) revert( Error_selector_offset, BadSignatureV_error_length ) } // Revert with generic invalid signer error message. // Store left-padded selector with push4, mem[28:32] mstore(0, InvalidSigner_error_selector) // revert(abi.encodeWithSignature("InvalidSigner()")) revert( Error_selector_offset, InvalidSigner_error_length ) } } // Restore the cached values overwritten by selector, digest and // signature head. mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature) mstore(selectorPtr, cachedWordOverwrittenBySelector) mstore( sub( signature, EIP1271_isValidSignature_digest_negativeOffset ), cachedWordOverwrittenByDigest ) } } // If the call failed... if (!success) { // Revert and pass reason along if one was returned. _revertWithReasonIfOneIsReturned(); // Otherwise, revert with error indicating bad contract signature. assembly { // Store left-padded selector with push4, mem[28:32] = selector mstore(0, BadContractSignature_error_selector) // revert(abi.encodeWithSignature("BadContractSignature()")) revert(Error_selector_offset, BadContractSignature_error_length) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /* * -------------------------- Disambiguation & Other Notes --------------------- * - The term "head" is used as it is in the documentation for ABI encoding, * but only in reference to dynamic types, i.e. it always refers to the * offset or pointer to the body of a dynamic type. In calldata, the head * is always an offset (relative to the parent object), while in memory, * the head is always the pointer to the body. More information found here: * https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding * - Note that the length of an array is separate from and precedes the * head of the array. * * - The term "body" is used in place of the term "head" used in the ABI * documentation. It refers to the start of the data for a dynamic type, * e.g. the first word of a struct or the first word of the first element * in an array. * * - The term "pointer" is used to describe the absolute position of a value * and never an offset relative to another value. * - The suffix "_ptr" refers to a memory pointer. * - The suffix "_cdPtr" refers to a calldata pointer. * * - The term "offset" is used to describe the position of a value relative * to some parent value. For example, OrderParameters_conduit_offset is the * offset to the "conduit" value in the OrderParameters struct relative to * the start of the body. * - Note: Offsets are used to derive pointers. * * - Some structs have pointers defined for all of their fields in this file. * Lines which are commented out are fields that are not used in the * codebase but have been left in for readability. */ uint256 constant ThirtyOneBytes = 0x1f; uint256 constant OneWord = 0x20; uint256 constant TwoWords = 0x40; uint256 constant ThreeWords = 0x60; uint256 constant OneWordShift = 0x5; uint256 constant TwoWordsShift = 0x6; uint256 constant FreeMemoryPointerSlot = 0x40; uint256 constant ZeroSlot = 0x60; uint256 constant DefaultFreeMemoryPointer = 0x80; uint256 constant Slot0x80 = 0x80; uint256 constant Slot0xA0 = 0xa0; uint256 constant Slot0xC0 = 0xc0; uint256 constant Generic_error_selector_offset = 0x1c; // abi.encodeWithSignature("transferFrom(address,address,uint256)") uint256 constant ERC20_transferFrom_signature = ( 0x23b872dd00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC20_transferFrom_sig_ptr = 0x0; uint256 constant ERC20_transferFrom_from_ptr = 0x04; uint256 constant ERC20_transferFrom_to_ptr = 0x24; uint256 constant ERC20_transferFrom_amount_ptr = 0x44; uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100 // abi.encodeWithSignature( // "safeTransferFrom(address,address,uint256,uint256,bytes)" // ) uint256 constant ERC1155_safeTransferFrom_signature = ( 0xf242432a00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0; uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04; uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24; uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64; uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84; uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4; uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196 uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0; // abi.encodeWithSignature( // "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)" // ) uint256 constant ERC1155_safeBatchTransferFrom_signature = ( 0x2eb2c2d600000000000000000000000000000000000000000000000000000000 ); // bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4( // bytes32(ERC1155_safeBatchTransferFrom_signature) // ); uint256 constant ERC721_transferFrom_signature = ( 0x23b872dd00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC721_transferFrom_sig_ptr = 0x0; uint256 constant ERC721_transferFrom_from_ptr = 0x04; uint256 constant ERC721_transferFrom_to_ptr = 0x24; uint256 constant ERC721_transferFrom_id_ptr = 0x44; uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100 /* * error NoContract(address account) * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x00: account * Revert buffer is memory[0x1c:0x40] */ uint256 constant NoContract_error_selector = 0x5f15d672; uint256 constant NoContract_error_account_ptr = 0x20; uint256 constant NoContract_error_length = 0x24; /* * error TokenTransferGenericFailure( * address token, * address from, * address to, * uint256 identifier, * uint256 amount * ) * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x20: token * - 0x40: from * - 0x60: to * - 0x80: identifier * - 0xa0: amount * Revert buffer is memory[0x1c:0xc0] */ uint256 constant TokenTransferGenericFailure_error_selector = 0xf486bc87; uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x20; uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x40; uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x60; uint256 constant TokenTransferGenericFailure_error_identifier_ptr = 0x80; uint256 constant TokenTransferGenericFailure_err_identifier_ptr = 0x80; uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0xa0; uint256 constant TokenTransferGenericFailure_error_length = 0xa4; uint256 constant ExtraGasBuffer = 0x20; uint256 constant CostPerWord = 0x3; uint256 constant MemoryExpansionCoefficientShift = 0x9; // Values are offset by 32 bytes in order to write the token to the beginning // in the event of a revert uint256 constant BatchTransfer1155Params_ptr = 0x24; uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64; uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84; uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4; uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4; uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4; uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4; uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0; // uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0; // uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0; uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80; uint256 constant ConduitBatch1155Transfer_from_offset = 0x20; uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60; // uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80; uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0; uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0; // uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0; // Note: abbreviated version of above constant to adhere to line length limit. uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80; uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00; uint256 constant Invalid1155BatchTransferEncoding_length = 0x04; uint256 constant Invalid1155BatchTransferEncoding_selector = ( 0xeba2084c00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155BatchTransferGenericFailure_error_signature = ( 0xafc445e200000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04; uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0; /* * error BadReturnValueFromERC20OnTransfer( * address token, address from, address to, uint256 amount * ) * - Defined in TokenTransferrerErrors.sol * Memory layout: * - 0x00: Left-padded selector (data begins at 0x1c) * - 0x00: token * - 0x20: from * - 0x40: to * - 0x60: amount * Revert buffer is memory[0x1c:0xa0] */ uint256 constant BadReturnValueFromERC20OnTransfer_error_selector = 0x98891923; uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x20; uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x40; uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x60; uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x80; uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title TokenTransferrerErrors */ interface TokenTransferrerErrors { /** * @dev Revert with an error when an ERC721 transfer with amount other than * one is attempted. * * @param amount The amount of the ERC721 tokens to transfer. */ error InvalidERC721TransferAmount(uint256 amount); /** * @dev Revert with an error when attempting to fulfill an order where an * item has an amount of zero. */ error MissingItemAmount(); /** * @dev Revert with an error when attempting to fulfill an order where an * item has unused parameters. This includes both the token and the * identifier parameters for native transfers as well as the identifier * parameter for ERC20 transfers. Note that the conduit does not * perform this check, leaving it up to the calling channel to enforce * when desired. */ error UnusedItemParameters(); /** * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token * transfer reverts. * * @param token The token for which the transfer was attempted. * @param from The source of the attempted transfer. * @param to The recipient of the attempted transfer. * @param identifier The identifier for the attempted transfer. * @param amount The amount for the attempted transfer. */ error TokenTransferGenericFailure( address token, address from, address to, uint256 identifier, uint256 amount ); /** * @dev Revert with an error when a batch ERC1155 token transfer reverts. * * @param token The token for which the transfer was attempted. * @param from The source of the attempted transfer. * @param to The recipient of the attempted transfer. * @param identifiers The identifiers for the attempted transfer. * @param amounts The amounts for the attempted transfer. */ error ERC1155BatchTransferGenericFailure( address token, address from, address to, uint256[] identifiers, uint256[] amounts ); /** * @dev Revert with an error when an ERC20 token transfer returns a falsey * value. * * @param token The token for which the ERC20 transfer was attempted. * @param from The source of the attempted ERC20 transfer. * @param to The recipient of the attempted ERC20 transfer. * @param amount The amount for the attempted ERC20 transfer. */ error BadReturnValueFromERC20OnTransfer( address token, address from, address to, uint256 amount ); /** * @dev Revert with an error when an account being called as an assumed * contract does not have code and returns no data. * * @param account The account that should contain code. */ error NoContract(address account); /** * @dev Revert with an error when attempting to execute an 1155 batch * transfer using calldata not produced by default ABI encoding or with * different lengths for ids and amounts arrays. */ error Invalid1155BatchTransferEncoding(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { OrderParameters } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { ConsiderationBase } from "./ConsiderationBase.sol"; import { Create2AddressDerivation_length, Create2AddressDerivation_ptr, EIP_712_PREFIX, EIP712_ConsiderationItem_size, EIP712_DigestPayload_size, EIP712_DomainSeparator_offset, EIP712_OfferItem_size, EIP712_Order_size, EIP712_OrderHash_offset, FreeMemoryPointerSlot, information_conduitController_offset, information_domainSeparator_offset, information_length, information_version_cd_offset, information_version_offset, information_versionLengthPtr, information_versionWithLength, MaskOverByteTwelve, MaskOverLastTwentyBytes, OneWord, OneWordShift, OrderParameters_consideration_head_offset, OrderParameters_counter_offset, OrderParameters_offer_head_offset, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; /** * @title GettersAndDerivers * @author 0age * @notice ConsiderationInternal contains pure and internal view functions * related to getting or deriving various values. */ contract GettersAndDerivers is ConsiderationBase { /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor( address conduitController ) ConsiderationBase(conduitController) {} /** * @dev Internal view function to derive the order hash for a given order. * Note that only the original consideration items are included in the * order hash, as additional consideration items may be supplied by the * caller. * * @param orderParameters The parameters of the order to hash. * @param counter The counter of the order to hash. * * @return orderHash The hash. */ function _deriveOrderHash( OrderParameters memory orderParameters, uint256 counter ) internal view returns (bytes32 orderHash) { // Get length of original consideration array and place it on the stack. uint256 originalConsiderationLength = ( orderParameters.totalOriginalConsiderationItems ); /* * Memory layout for an array of structs (dynamic or not) is similar * to ABI encoding of dynamic types, with a head segment followed by * a data segment. The main difference is that the head of an element * is a memory pointer rather than an offset. */ // Declare a variable for the derived hash of the offer array. bytes32 offerHash; // Read offer item EIP-712 typehash from runtime code & place on stack. bytes32 typeHash = _OFFER_ITEM_TYPEHASH; // Utilize assembly so that memory regions can be reused across hashes. assembly { // Retrieve the free memory pointer and place on the stack. let hashArrPtr := mload(FreeMemoryPointerSlot) // Get the pointer to the offers array. let offerArrPtr := mload( add(orderParameters, OrderParameters_offer_head_offset) ) // Load the length. let offerLength := mload(offerArrPtr) // Set the pointer to the first offer's head. offerArrPtr := add(offerArrPtr, OneWord) // Iterate over the offer items. for { let i := 0 } lt(i, offerLength) { i := add(i, 1) } { // Read the pointer to the offer data and subtract one word // to get typeHash pointer. let ptr := sub(mload(offerArrPtr), OneWord) // Read the current value before the offer data. let value := mload(ptr) // Write the type hash to the previous word. mstore(ptr, typeHash) // Take the EIP712 hash and store it in the hash array. mstore(hashArrPtr, keccak256(ptr, EIP712_OfferItem_size)) // Restore the previous word. mstore(ptr, value) // Increment the array pointers by one word. offerArrPtr := add(offerArrPtr, OneWord) hashArrPtr := add(hashArrPtr, OneWord) } // Derive the offer hash using the hashes of each item. offerHash := keccak256( mload(FreeMemoryPointerSlot), shl(OneWordShift, offerLength) ) } // Declare a variable for the derived hash of the consideration array. bytes32 considerationHash; // Read consideration item typehash from runtime code & place on stack. typeHash = _CONSIDERATION_ITEM_TYPEHASH; // Utilize assembly so that memory regions can be reused across hashes. assembly { // Retrieve the free memory pointer and place on the stack. let hashArrPtr := mload(FreeMemoryPointerSlot) // Get the pointer to the consideration array. let considerationArrPtr := add( mload( add( orderParameters, OrderParameters_consideration_head_offset ) ), OneWord ) // Iterate over the consideration items (not including tips). for { let i := 0 } lt(i, originalConsiderationLength) { i := add(i, 1) } { // Read the pointer to the consideration data and subtract one // word to get typeHash pointer. let ptr := sub(mload(considerationArrPtr), OneWord) // Read the current value before the consideration data. let value := mload(ptr) // Write the type hash to the previous word. mstore(ptr, typeHash) // Take the EIP712 hash and store it in the hash array. mstore( hashArrPtr, keccak256(ptr, EIP712_ConsiderationItem_size) ) // Restore the previous word. mstore(ptr, value) // Increment the array pointers by one word. considerationArrPtr := add(considerationArrPtr, OneWord) hashArrPtr := add(hashArrPtr, OneWord) } // Derive the consideration hash using the hashes of each item. considerationHash := keccak256( mload(FreeMemoryPointerSlot), shl(OneWordShift, originalConsiderationLength) ) } // Read order item EIP-712 typehash from runtime code & place on stack. typeHash = _ORDER_TYPEHASH; // Utilize assembly to access derived hashes & other arguments directly. assembly { // Retrieve pointer to the region located just behind parameters. let typeHashPtr := sub(orderParameters, OneWord) // Store the value at that pointer location to restore later. let previousValue := mload(typeHashPtr) // Store the order item EIP-712 typehash at the typehash location. mstore(typeHashPtr, typeHash) // Retrieve the pointer for the offer array head. let offerHeadPtr := add( orderParameters, OrderParameters_offer_head_offset ) // Retrieve the data pointer referenced by the offer head. let offerDataPtr := mload(offerHeadPtr) // Store the offer hash at the retrieved memory location. mstore(offerHeadPtr, offerHash) // Retrieve the pointer for the consideration array head. let considerationHeadPtr := add( orderParameters, OrderParameters_consideration_head_offset ) // Retrieve the data pointer referenced by the consideration head. let considerationDataPtr := mload(considerationHeadPtr) // Store the consideration hash at the retrieved memory location. mstore(considerationHeadPtr, considerationHash) // Retrieve the pointer for the counter. let counterPtr := add( orderParameters, OrderParameters_counter_offset ) // Store the counter at the retrieved memory location. mstore(counterPtr, counter) // Derive the order hash using the full range of order parameters. orderHash := keccak256(typeHashPtr, EIP712_Order_size) // Restore the value previously held at typehash pointer location. mstore(typeHashPtr, previousValue) // Restore offer data pointer at the offer head pointer location. mstore(offerHeadPtr, offerDataPtr) // Restore consideration data pointer at the consideration head ptr. mstore(considerationHeadPtr, considerationDataPtr) // Restore consideration item length at the counter pointer. mstore(counterPtr, originalConsiderationLength) } } /** * @dev Internal view function to derive the address of a given conduit * using a corresponding conduit key. * * @param conduitKey A bytes32 value indicating what corresponding conduit, * if any, to source token approvals from. This value is * the "salt" parameter supplied by the deployer (i.e. the * conduit controller) when deploying the given conduit. * * @return conduit The address of the conduit associated with the given * conduit key. */ function _deriveConduit( bytes32 conduitKey ) internal view returns (address conduit) { // Read conduit controller address from runtime and place on the stack. address conduitController = address(_CONDUIT_CONTROLLER); // Read conduit creation code hash from runtime and place on the stack. bytes32 conduitCreationCodeHash = _CONDUIT_CREATION_CODE_HASH; // Leverage scratch space to perform an efficient hash. assembly { // Retrieve the free memory pointer; it will be replaced afterwards. let freeMemoryPointer := mload(FreeMemoryPointerSlot) // Place the control character and the conduit controller in scratch // space; note that eleven bytes at the beginning are left unused. mstore(0, or(MaskOverByteTwelve, conduitController)) // Place the conduit key in the next region of scratch space. mstore(OneWord, conduitKey) // Place conduit creation code hash in free memory pointer location. mstore(TwoWords, conduitCreationCodeHash) // Derive conduit by hashing and applying a mask over last 20 bytes. conduit := and( // Hash the relevant region. keccak256( // The region starts at memory pointer 11. Create2AddressDerivation_ptr, // The region is 85 bytes long (1 + 20 + 32 + 32). Create2AddressDerivation_length ), // The address equals the last twenty bytes of the hash. MaskOverLastTwentyBytes ) // Restore the free memory pointer. mstore(FreeMemoryPointerSlot, freeMemoryPointer) } } /** * @dev Internal view function to get the EIP-712 domain separator. If the * chainId matches the chainId set on deployment, the cached domain * separator will be returned; otherwise, it will be derived from * scratch. * * @return The domain separator. */ function _domainSeparator() internal view returns (bytes32) { return block.chainid == _CHAIN_ID ? _DOMAIN_SEPARATOR : _deriveDomainSeparator(); } /** * @dev Internal view function to retrieve configuration information for * this contract. * * @return The contract version. * @return The domain separator for this contract. * @return The conduit Controller set for this contract. */ function _information() internal view returns ( string memory /* version */, bytes32 /* domainSeparator */, address /* conduitController */ ) { // Derive the domain separator. bytes32 domainSeparator = _domainSeparator(); // Declare variable as immutables cannot be accessed within assembly. address conduitController = address(_CONDUIT_CONTROLLER); // Return the version, domain separator, and conduit controller. assembly { mstore(information_version_offset, information_version_cd_offset) mstore(information_domainSeparator_offset, domainSeparator) mstore(information_conduitController_offset, conduitController) mstore(information_versionLengthPtr, information_versionWithLength) return(information_version_offset, information_length) } } /** * @dev Internal pure function to efficiently derive an digest to sign for * an order in accordance with EIP-712. * * @param domainSeparator The domain separator. * @param orderHash The order hash. * * @return value The hash. */ function _deriveEIP712Digest( bytes32 domainSeparator, bytes32 orderHash ) internal pure returns (bytes32 value) { // Leverage scratch space to perform an efficient hash. assembly { // Place the EIP-712 prefix at the start of scratch space. mstore(0, EIP_712_PREFIX) // Place the domain separator in the next region of scratch space. mstore(EIP712_DomainSeparator_offset, domainSeparator) // Place the order hash in scratch space, spilling into the first // two bytes of the free memory pointer — this should never be set // as memory cannot be expanded to that size, and will be zeroed out // after the hash is performed. mstore(EIP712_OrderHash_offset, orderHash) // Hash the relevant region (65 bytes). value := keccak256(0, EIP712_DigestPayload_size) // Clear out the dirtied bits in the memory pointer. mstore(EIP712_OrderHash_offset, 0) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ConsiderationEventsAndErrors } from "seaport-types/src/interfaces/ConsiderationEventsAndErrors.sol"; import { ReentrancyGuard } from "./ReentrancyGuard.sol"; import { Counter_blockhash_shift, OneWord, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; /** * @title CounterManager * @author 0age * @notice CounterManager contains a storage mapping and related functionality * for retrieving and incrementing a per-offerer counter. */ contract CounterManager is ConsiderationEventsAndErrors, ReentrancyGuard { // Only orders signed using an offerer's current counter are fulfillable. mapping(address => uint256) private _counters; /** * @dev Internal function to cancel all orders from a given offerer in bulk * by incrementing a counter by a large, quasi-random interval. Note * that only the offerer may increment the counter. Note that the * counter is incremented by a large, quasi-random interval, which * makes it infeasible to "activate" signed orders by incrementing the * counter. This activation functionality can be achieved instead with * restricted orders or contract orders. * * @return newCounter The new counter. */ function _incrementCounter() internal returns (uint256 newCounter) { // Ensure that the reentrancy guard is not currently set. _assertNonReentrant(); // Utilize assembly to access counters storage mapping directly. Skip // overflow check as counter cannot be incremented that far. assembly { // Use second half of previous block hash as a quasi-random number. let quasiRandomNumber := shr( Counter_blockhash_shift, blockhash(sub(number(), 1)) ) // Write the caller to scratch space. mstore(0, caller()) // Write the storage slot for _counters to scratch space. mstore(OneWord, _counters.slot) // Derive the storage pointer for the counter value. let storagePointer := keccak256(0, TwoWords) // Derive new counter value using random number and original value. newCounter := add(quasiRandomNumber, sload(storagePointer)) // Store the updated counter value. sstore(storagePointer, newCounter) } // Emit an event containing the new counter. emit CounterIncremented(newCounter, msg.sender); } /** * @dev Internal view function to retrieve the current counter for a given * offerer. * * @param offerer The offerer in question. * * @return currentCounter The current counter. */ function _getCounter( address offerer ) internal view returns (uint256 currentCounter) { // Return the counter for the supplied offerer. currentCounter = _counters[offerer]; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title SignatureVerificationErrors * @author 0age * @notice SignatureVerificationErrors contains all errors related to signature * verification. */ interface SignatureVerificationErrors { /** * @dev Revert with an error when a signature that does not contain a v * value of 27 or 28 has been supplied. * * @param v The invalid v value. */ error BadSignatureV(uint8 v); /** * @dev Revert with an error when the signer recovered by the supplied * signature does not match the offerer or an allowed EIP-1271 signer * as specified by the offerer in the event they are a contract. */ error InvalidSigner(); /** * @dev Revert with an error when a signer cannot be recovered from the * supplied signature. */ error InvalidSignature(); /** * @dev Revert with an error when an EIP-1271 call to an account fails. */ error BadContractSignature(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ConduitControllerInterface } from "seaport-types/src/interfaces/ConduitControllerInterface.sol"; import { ConsiderationEventsAndErrors } from "seaport-types/src/interfaces/ConsiderationEventsAndErrors.sol"; import { BulkOrder_Typehash_Height_One, BulkOrder_Typehash_Height_Two, BulkOrder_Typehash_Height_Three, BulkOrder_Typehash_Height_Four, BulkOrder_Typehash_Height_Five, BulkOrder_Typehash_Height_Six, BulkOrder_Typehash_Height_Seven, BulkOrder_Typehash_Height_Eight, BulkOrder_Typehash_Height_Nine, BulkOrder_Typehash_Height_Ten, BulkOrder_Typehash_Height_Eleven, BulkOrder_Typehash_Height_Twelve, BulkOrder_Typehash_Height_Thirteen, BulkOrder_Typehash_Height_Fourteen, BulkOrder_Typehash_Height_Fifteen, BulkOrder_Typehash_Height_Sixteen, BulkOrder_Typehash_Height_Seventeen, BulkOrder_Typehash_Height_Eighteen, BulkOrder_Typehash_Height_Nineteen, BulkOrder_Typehash_Height_Twenty, BulkOrder_Typehash_Height_TwentyOne, BulkOrder_Typehash_Height_TwentyTwo, BulkOrder_Typehash_Height_TwentyThree, BulkOrder_Typehash_Height_TwentyFour, EIP712_domainData_chainId_offset, EIP712_domainData_nameHash_offset, EIP712_domainData_size, EIP712_domainData_verifyingContract_offset, EIP712_domainData_versionHash_offset, FreeMemoryPointerSlot, NameLengthPtr, NameWithLength, OneWord, Slot0x80, ThreeWords, ZeroSlot } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { ConsiderationDecoder } from "./ConsiderationDecoder.sol"; import { ConsiderationEncoder } from "./ConsiderationEncoder.sol"; /** * @title ConsiderationBase * @author 0age * @notice ConsiderationBase contains immutable constants and constructor logic. */ contract ConsiderationBase is ConsiderationDecoder, ConsiderationEncoder, ConsiderationEventsAndErrors { // Precompute hashes, original chainId, and domain separator on deployment. bytes32 internal immutable _NAME_HASH; bytes32 internal immutable _VERSION_HASH; bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH; bytes32 internal immutable _OFFER_ITEM_TYPEHASH; bytes32 internal immutable _CONSIDERATION_ITEM_TYPEHASH; bytes32 internal immutable _ORDER_TYPEHASH; uint256 internal immutable _CHAIN_ID; bytes32 internal immutable _DOMAIN_SEPARATOR; // Allow for interaction with the conduit controller. ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER; // Cache the conduit creation code hash used by the conduit controller. bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH; /** * @dev Derive and set hashes, reference chainId, and associated domain * separator during deployment. * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) { // Derive name and version hashes alongside required EIP-712 typehashes. ( _NAME_HASH, _VERSION_HASH, _EIP_712_DOMAIN_TYPEHASH, _OFFER_ITEM_TYPEHASH, _CONSIDERATION_ITEM_TYPEHASH, _ORDER_TYPEHASH ) = _deriveTypehashes(); // Store the current chainId and derive the current domain separator. _CHAIN_ID = block.chainid; _DOMAIN_SEPARATOR = _deriveDomainSeparator(); // Set the supplied conduit controller. _CONDUIT_CONTROLLER = ConduitControllerInterface(conduitController); // Retrieve the conduit creation code hash from the supplied controller. (_CONDUIT_CREATION_CODE_HASH, ) = ( _CONDUIT_CONTROLLER.getConduitCodeHashes() ); } /** * @dev Internal view function to derive the EIP-712 domain separator. * * @return domainSeparator The derived domain separator. */ function _deriveDomainSeparator() internal view returns (bytes32 domainSeparator) { bytes32 typehash = _EIP_712_DOMAIN_TYPEHASH; bytes32 nameHash = _NAME_HASH; bytes32 versionHash = _VERSION_HASH; // Leverage scratch space and other memory to perform an efficient hash. assembly { // Retrieve the free memory pointer; it will be replaced afterwards. let freeMemoryPointer := mload(FreeMemoryPointerSlot) // Retrieve value at 0x80; it will also be replaced afterwards. let slot0x80 := mload(Slot0x80) // Place typehash, name hash, and version hash at start of memory. mstore(0, typehash) mstore(EIP712_domainData_nameHash_offset, nameHash) mstore(EIP712_domainData_versionHash_offset, versionHash) // Place chainId in the next memory location. mstore(EIP712_domainData_chainId_offset, chainid()) // Place the address of this contract in the next memory location. mstore(EIP712_domainData_verifyingContract_offset, address()) // Hash relevant region of memory to derive the domain separator. domainSeparator := keccak256(0, EIP712_domainData_size) // Restore the free memory pointer. mstore(FreeMemoryPointerSlot, freeMemoryPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) // Restore the value at 0x80. mstore(Slot0x80, slot0x80) } } /** * @dev Internal pure function to retrieve the default name of this * contract and return. * * @return The name of this contract. */ function _name() internal pure virtual returns (string memory) { // Return the name of the contract. assembly { // First element is the offset for the returned string. Offset the // value in memory by one word so that the free memory pointer will // be overwritten by the next write. mstore(OneWord, OneWord) // Name is right padded, so it touches the length which is left // padded. This enables writing both values at once. The free memory // pointer will be overwritten in the process. mstore(NameLengthPtr, NameWithLength) // Standard ABI encoding pads returned data to the nearest word. Use // the already empty zero slot memory region for this purpose and // return the final name string, offset by the original single word. return(OneWord, ThreeWords) } } /** * @dev Internal pure function to retrieve the default name of this contract * as a string that can be used internally. * * @return The name of this contract. */ function _nameString() internal pure virtual returns (string memory) { // Return the name of the contract. return "Consideration"; } /** * @dev Internal pure function to derive required EIP-712 typehashes and * other hashes during contract creation. * * @return nameHash The hash of the name of the contract. * @return versionHash The hash of the version string of the * contract. * @return eip712DomainTypehash The primary EIP-712 domain typehash. * @return offerItemTypehash The EIP-712 typehash for OfferItem * types. * @return considerationItemTypehash The EIP-712 typehash for * ConsiderationItem types. * @return orderTypehash The EIP-712 typehash for Order types. */ function _deriveTypehashes() internal pure returns ( bytes32 nameHash, bytes32 versionHash, bytes32 eip712DomainTypehash, bytes32 offerItemTypehash, bytes32 considerationItemTypehash, bytes32 orderTypehash ) { // Derive hash of the name of the contract. nameHash = keccak256(bytes(_nameString())); // Derive hash of the version string of the contract. versionHash = keccak256(bytes("1.6")); // Construct the OfferItem type string. bytes memory offerItemTypeString = bytes( "OfferItem(" "uint8 itemType," "address token," "uint256 identifierOrCriteria," "uint256 startAmount," "uint256 endAmount" ")" ); // Construct the ConsiderationItem type string. bytes memory considerationItemTypeString = bytes( "ConsiderationItem(" "uint8 itemType," "address token," "uint256 identifierOrCriteria," "uint256 startAmount," "uint256 endAmount," "address recipient" ")" ); // Construct the OrderComponents type string, not including the above. bytes memory orderComponentsPartialTypeString = bytes( "OrderComponents(" "address offerer," "address zone," "OfferItem[] offer," "ConsiderationItem[] consideration," "uint8 orderType," "uint256 startTime," "uint256 endTime," "bytes32 zoneHash," "uint256 salt," "bytes32 conduitKey," "uint256 counter" ")" ); // Construct the primary EIP-712 domain type string. eip712DomainTypehash = keccak256( bytes( "EIP712Domain(" "string name," "string version," "uint256 chainId," "address verifyingContract" ")" ) ); // Derive the OfferItem type hash using the corresponding type string. offerItemTypehash = keccak256(offerItemTypeString); // Derive ConsiderationItem type hash using corresponding type string. considerationItemTypehash = keccak256(considerationItemTypeString); bytes memory orderTypeString = bytes.concat( orderComponentsPartialTypeString, considerationItemTypeString, offerItemTypeString ); // Derive OrderItem type hash via combination of relevant type strings. orderTypehash = keccak256(orderTypeString); } /** * @dev Internal pure function to look up one of twenty-four potential bulk * order typehash constants based on the height of the bulk order tree. * Note that values between one and twenty-four are supported, which is * enforced by _isValidBulkOrderSize. * * @param _treeHeight The height of the bulk order tree. The value must be * between one and twenty-four. * * @return _typeHash The EIP-712 typehash for the bulk order type with the * given height. */ function _lookupBulkOrderTypehash( uint256 _treeHeight ) internal pure returns (bytes32 _typeHash) { // Utilize assembly to efficiently retrieve correct bulk order typehash. assembly { // Use a Yul function to enable use of the `leave` keyword // to stop searching once the appropriate type hash is found. function lookupTypeHash(treeHeight) -> typeHash { // Handle tree heights one through eight. if lt(treeHeight, 9) { // Handle tree heights one through four. if lt(treeHeight, 5) { // Handle tree heights one and two. if lt(treeHeight, 3) { // Utilize branchless logic to determine typehash. typeHash := ternary( eq(treeHeight, 1), BulkOrder_Typehash_Height_One, BulkOrder_Typehash_Height_Two ) // Exit the function once typehash has been located. leave } // Handle height three and four via branchless logic. typeHash := ternary( eq(treeHeight, 3), BulkOrder_Typehash_Height_Three, BulkOrder_Typehash_Height_Four ) // Exit the function once typehash has been located. leave } // Handle tree height five and six. if lt(treeHeight, 7) { // Utilize branchless logic to determine typehash. typeHash := ternary( eq(treeHeight, 5), BulkOrder_Typehash_Height_Five, BulkOrder_Typehash_Height_Six ) // Exit the function once typehash has been located. leave } // Handle height seven and eight via branchless logic. typeHash := ternary( eq(treeHeight, 7), BulkOrder_Typehash_Height_Seven, BulkOrder_Typehash_Height_Eight ) // Exit the function once typehash has been located. leave } // Handle tree height nine through sixteen. if lt(treeHeight, 17) { // Handle tree height nine through twelve. if lt(treeHeight, 13) { // Handle tree height nine and ten. if lt(treeHeight, 11) { // Utilize branchless logic to determine typehash. typeHash := ternary( eq(treeHeight, 9), BulkOrder_Typehash_Height_Nine, BulkOrder_Typehash_Height_Ten ) // Exit the function once typehash has been located. leave } // Handle height eleven and twelve via branchless logic. typeHash := ternary( eq(treeHeight, 11), BulkOrder_Typehash_Height_Eleven, BulkOrder_Typehash_Height_Twelve ) // Exit the function once typehash has been located. leave } // Handle tree height thirteen and fourteen. if lt(treeHeight, 15) { // Utilize branchless logic to determine typehash. typeHash := ternary( eq(treeHeight, 13), BulkOrder_Typehash_Height_Thirteen, BulkOrder_Typehash_Height_Fourteen ) // Exit the function once typehash has been located. leave } // Handle height fifteen and sixteen via branchless logic. typeHash := ternary( eq(treeHeight, 15), BulkOrder_Typehash_Height_Fifteen, BulkOrder_Typehash_Height_Sixteen ) // Exit the function once typehash has been located. leave } // Handle tree height seventeen through twenty. if lt(treeHeight, 21) { // Handle tree height seventeen and eighteen. if lt(treeHeight, 19) { // Utilize branchless logic to determine typehash. typeHash := ternary( eq(treeHeight, 17), BulkOrder_Typehash_Height_Seventeen, BulkOrder_Typehash_Height_Eighteen ) // Exit the function once typehash has been located. leave } // Handle height nineteen and twenty via branchless logic. typeHash := ternary( eq(treeHeight, 19), BulkOrder_Typehash_Height_Nineteen, BulkOrder_Typehash_Height_Twenty ) // Exit the function once typehash has been located. leave } // Handle tree height twenty-one and twenty-two. if lt(treeHeight, 23) { // Utilize branchless logic to determine typehash. typeHash := ternary( eq(treeHeight, 21), BulkOrder_Typehash_Height_TwentyOne, BulkOrder_Typehash_Height_TwentyTwo ) // Exit the function once typehash has been located. leave } // Handle height twenty-three & twenty-four w/ branchless logic. typeHash := ternary( eq(treeHeight, 23), BulkOrder_Typehash_Height_TwentyThree, BulkOrder_Typehash_Height_TwentyFour ) // Exit the function once typehash has been located. leave } // Implement ternary conditional using branchless logic. function ternary(cond, ifTrue, ifFalse) -> c { c := xor(ifFalse, mul(cond, xor(ifFalse, ifTrue))) } // Look up the typehash using the supplied tree height. _typeHash := lookupTypeHash(_treeHeight) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { OrderParameters, ReceivedItem, SpentItem } from "../lib/ConsiderationStructs.sol"; /** * @title ConsiderationEventsAndErrors * @author 0age * @notice ConsiderationEventsAndErrors contains all events and errors. */ interface ConsiderationEventsAndErrors { /** * @dev Emit an event whenever an order is successfully fulfilled. * * @param orderHash The hash of the fulfilled order. * @param offerer The offerer of the fulfilled order. * @param zone The zone of the fulfilled order. * @param recipient The recipient of each spent item on the fulfilled * order, or the null address if there is no specific * fulfiller (i.e. the order is part of a group of * orders). Defaults to the caller unless explicitly * specified otherwise by the fulfiller. * @param offer The offer items spent as part of the order. * @param consideration The consideration items received as part of the * order along with the recipients of each item. */ event OrderFulfilled( bytes32 orderHash, address indexed offerer, address indexed zone, address recipient, SpentItem[] offer, ReceivedItem[] consideration ); /** * @dev Emit an event whenever an order is successfully cancelled. * * @param orderHash The hash of the cancelled order. * @param offerer The offerer of the cancelled order. * @param zone The zone of the cancelled order. */ event OrderCancelled( bytes32 orderHash, address indexed offerer, address indexed zone ); /** * @dev Emit an event whenever an order is explicitly validated. Note that * this event will not be emitted on partial fills even though they do * validate the order as part of partial fulfillment. * * @param orderHash The hash of the validated order. * @param orderParameters The parameters of the validated order. */ event OrderValidated(bytes32 orderHash, OrderParameters orderParameters); /** * @dev Emit an event whenever one or more orders are matched using either * matchOrders or matchAdvancedOrders. * * @param orderHashes The order hashes of the matched orders. */ event OrdersMatched(bytes32[] orderHashes); /** * @dev Emit an event whenever a counter for a given offerer is incremented. * * @param newCounter The new counter for the offerer. * @param offerer The offerer in question. */ event CounterIncremented(uint256 newCounter, address indexed offerer); /** * @dev Revert with an error when attempting to fill an order that has * already been fully filled. * * @param orderHash The order hash on which a fill was attempted. */ error OrderAlreadyFilled(bytes32 orderHash); /** * @dev Revert with an error when attempting to fill an order outside the * specified start time and end time. * * @param startTime The time at which the order becomes active. * @param endTime The time at which the order becomes inactive. */ error InvalidTime(uint256 startTime, uint256 endTime); /** * @dev Revert with an error when attempting to fill an order referencing an * invalid conduit (i.e. one that has not been deployed). */ error InvalidConduit(bytes32 conduitKey, address conduit); /** * @dev Revert with an error when an order is supplied for fulfillment with * a consideration array that is shorter than the original array. */ error MissingOriginalConsiderationItems(); /** * @dev Revert with an error when an order is validated and the length of * the consideration array is not equal to the supplied total original * consideration items value. This error is also thrown when contract * orders supply a total original consideration items value that does * not match the supplied consideration array length. */ error ConsiderationLengthNotEqualToTotalOriginal(); /** * @dev Revert with an error when a call to a conduit fails with revert data * that is too expensive to return. */ error InvalidCallToConduit(address conduit); /** * @dev Revert with an error if a consideration amount has not been fully * zeroed out after applying all fulfillments. * * @param orderIndex The index of the order with the consideration * item with a shortfall. * @param considerationIndex The index of the consideration item on the * order. * @param shortfallAmount The unfulfilled consideration amount. */ error ConsiderationNotMet( uint256 orderIndex, uint256 considerationIndex, uint256 shortfallAmount ); /** * @dev Revert with an error when insufficient native tokens are supplied as * part of msg.value when fulfilling orders. */ error InsufficientNativeTokensSupplied(); /** * @dev Revert with an error when a native token transfer reverts. */ error NativeTokenTransferGenericFailure(address account, uint256 amount); /** * @dev Revert with an error when a partial fill is attempted on an order * that does not specify partial fill support in its order type. */ error PartialFillsNotEnabledForOrder(); /** * @dev Revert with an error when attempting to fill an order that has been * cancelled. * * @param orderHash The hash of the cancelled order. */ error OrderIsCancelled(bytes32 orderHash); /** * @dev Revert with an error when attempting to fill a basic order that has * been partially filled. * * @param orderHash The hash of the partially used order. */ error OrderPartiallyFilled(bytes32 orderHash); /** * @dev Revert with an error when attempting to cancel an order as a caller * other than the indicated offerer or zone or when attempting to * cancel a contract order. */ error CannotCancelOrder(); /** * @dev Revert with an error when supplying a fraction with a value of zero * for the numerator or denominator, or one where the numerator exceeds * the denominator. */ error BadFraction(); /** * @dev Revert with an error when a caller attempts to supply callvalue to a * non-payable basic order route or does not supply any callvalue to a * payable basic order route. */ error InvalidMsgValue(uint256 value); /** * @dev Revert with an error when attempting to fill a basic order using * calldata not produced by default ABI encoding. */ error InvalidBasicOrderParameterEncoding(); /** * @dev Revert with an error when attempting to fulfill any number of * available orders when none are fulfillable. */ error NoSpecifiedOrdersAvailable(); /** * @dev Revert with an error when attempting to fulfill an order with an * offer for a native token outside of matching orders. */ error InvalidNativeOfferItem(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { ReentrancyErrors } from "seaport-types/src/interfaces/ReentrancyErrors.sol"; import { LowLevelHelpers } from "./LowLevelHelpers.sol"; import { _revertInvalidMsgValue, _revertNoReentrantCalls } from "seaport-types/src/lib/ConsiderationErrors.sol"; import { _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_SSTORE, _ENTERED_SSTORE, _NOT_ENTERED_SSTORE, _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_TSTORE, _ENTERED_TSTORE, _NOT_ENTERED_TSTORE, _TSTORE_ENABLED_SSTORE, _REENTRANCY_GUARD_SLOT, _TLOAD_TEST_PAYLOAD, _TLOAD_TEST_PAYLOAD_OFFSET, _TLOAD_TEST_PAYLOAD_LENGTH } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { InvalidMsgValue_error_selector, InvalidMsgValue_error_length, InvalidMsgValue_error_value_ptr, NoReentrantCalls_error_selector, NoReentrantCalls_error_length, Error_selector_offset } from "seaport-types/src/lib/ConsiderationErrorConstants.sol"; /** * @title ReentrancyGuard * @author 0age * @notice ReentrancyGuard contains a storage variable (or a transient storage * variable in EVM environments that support it once activated) and * related functionality for protecting against reentrancy. */ contract ReentrancyGuard is ReentrancyErrors, LowLevelHelpers { // Declare an immutable variable to store the initial TSTORE support status. bool private immutable _tstoreInitialSupport; // Declare an immutable variable to store the tstore test contract address. address private immutable _tloadTestContract; /** * @dev Initialize the reentrancy guard during deployment. This involves * attempting to deploy a contract that utilizes TLOAD as part of the * contract construction bytecode, and configuring initial support for * using TSTORE in place of SSTORE for the reentrancy lock based on the * result. */ constructor() { // Deploy the contract testing TLOAD support and store the address. address tloadTestContract = _prepareTloadTest(); // Ensure the deployment was successful. if (tloadTestContract == address(0)) { revert TloadTestContractDeploymentFailed(); } // Determine if TSTORE is supported. bool tstoreInitialSupport = _testTload(tloadTestContract); // Store the result as an immutable. _tstoreInitialSupport = tstoreInitialSupport; // Set the address of the deployed TLOAD test contract as an immutable. _tloadTestContract = tloadTestContract; // If not using TSTORE (where _NOT_ENTERED_TSTORE = 0), set initial // sentinel value (where _NOT_ENTERED_SSTORE = 1). if (!tstoreInitialSupport) { // Initialize storage for the reentrancy guard in a cleared state. assembly { sstore(_REENTRANCY_GUARD_SLOT, _NOT_ENTERED_SSTORE) } } } /** * @dev External function to activate TSTORE usage for the reentrancy guard. * Does not need to be called if TSTORE is supported from deployment, * and only needs to be called once. Reverts if TSTORE has already been * activated, if the opcode is not available, or if the reentrancy * guard is currently set. */ function __activateTstore() external { // Determine if TSTORE can potentially be activated. If it has already // been activated, or if the reentrancy guard is currently set, then // it cannot be activated. bool tstoreActivatable; assembly { tstoreActivatable := eq( sload(_REENTRANCY_GUARD_SLOT), _NOT_ENTERED_SSTORE ) } // Revert if TSTORE is already activated or not activatable. if (_tstoreInitialSupport || !tstoreActivatable) { revert TStoreAlreadyActivated(); } // Determine if TSTORE can be activated and revert if not. if (!_testTload(_tloadTestContract)) { revert TStoreNotSupported(); } // Mark TSTORE as activated. assembly { sstore(_REENTRANCY_GUARD_SLOT, _TSTORE_ENABLED_SSTORE) } } /** * @dev Internal function to ensure that a sentinel value for the reentrancy * guard is not currently set and, if not, to set a sentinel value for * the reentrancy guard based on whether or not native tokens may be * received during execution or not. * * @param acceptNativeTokens A boolean indicating whether native tokens may * be received during execution or not. */ function _setReentrancyGuard(bool acceptNativeTokens) internal { // Place immutable variable on the stack access within inline assembly. bool tstoreInitialSupport = _tstoreInitialSupport; // Utilize assembly to set the reentrancy guard based on tstore support. assembly { // "Loop" over three possible cases for setting the reentrancy guard // based on tstore support and state, exiting once the respective // state has been identified and a corresponding guard has been set. for {} 1 {} { // 1: handle case where tstore is supported from the start. if tstoreInitialSupport { // Ensure that the reentrancy guard is not already set. if tload(_REENTRANCY_GUARD_SLOT) { // Store left-padded selector with push4, // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert( Error_selector_offset, NoReentrantCalls_error_length ) } // Set the reentrancy guard. A value of 1 indicates that // native tokens may not be accepted during execution, // whereas a value of 2 indicates that they will be accepted // (returning any remaining native tokens to the caller). tstore( _REENTRANCY_GUARD_SLOT, add(_ENTERED_TSTORE, acceptNativeTokens) ) // Exit the loop. break } // Retrieve the reentrancy guard sentinel value. let reentrancyGuard := sload(_REENTRANCY_GUARD_SLOT) // 2: handle tstore support that was activated post-deployment. if iszero(reentrancyGuard) { // Ensure that the reentrancy guard is not already set. if tload(_REENTRANCY_GUARD_SLOT) { // Store left-padded selector with push4, // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert( Error_selector_offset, NoReentrantCalls_error_length ) } // Set the reentrancy guard. A value of 1 indicates that // native tokens may not be accepted during execution, // whereas a value of 2 indicates that they will be accepted // (returning any remaining native tokens to the caller). tstore( _REENTRANCY_GUARD_SLOT, add(_ENTERED_TSTORE, acceptNativeTokens) ) // Exit the loop. break } // 3: handle case where tstore support has not been activated. // Ensure that the reentrancy guard is not already set. if iszero(eq(reentrancyGuard, _NOT_ENTERED_SSTORE)) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert(Error_selector_offset, NoReentrantCalls_error_length) } // Set the reentrancy guard. A value of 2 indicates that native // tokens may not be accepted during execution, whereas a value // of 3 indicates that they will be accepted (with any remaining // native tokens returned to the caller). sstore( _REENTRANCY_GUARD_SLOT, add(_ENTERED_SSTORE, acceptNativeTokens) ) // Exit the loop. break } } } /** * @dev Internal function to unset the reentrancy guard sentinel value. */ function _clearReentrancyGuard() internal { // Place immutable variable on the stack access within inline assembly. bool tstoreInitialSupport = _tstoreInitialSupport; // Utilize assembly to clear reentrancy guard based on tstore support. assembly { // "Loop" over three possible cases for clearing reentrancy guard // based on tstore support and state, exiting once the respective // state has been identified and corresponding guard cleared. for {} 1 {} { // 1: handle case where tstore is supported from the start. if tstoreInitialSupport { // Clear the reentrancy guard. tstore(_REENTRANCY_GUARD_SLOT, _NOT_ENTERED_TSTORE) // Exit the loop. break } // Retrieve the reentrancy guard sentinel value. let reentrancyGuard := sload(_REENTRANCY_GUARD_SLOT) // 2: handle tstore support that was activated post-deployment. if iszero(reentrancyGuard) { // Clear the reentrancy guard. tstore(_REENTRANCY_GUARD_SLOT, _NOT_ENTERED_TSTORE) // Exit the loop. break } // 3: handle case where tstore support has not been activated. // Clear the reentrancy guard. sstore(_REENTRANCY_GUARD_SLOT, _NOT_ENTERED_SSTORE) // Exit the loop. break } } } /** * @dev Internal view function to ensure that a sentinel value for the * reentrancy guard is not currently set. */ function _assertNonReentrant() internal view { // Place immutable variable on the stack access within inline assembly. bool tstoreInitialSupport = _tstoreInitialSupport; // Utilize assembly to check reentrancy guard based on tstore support. assembly { // 1: handle case where tstore is supported from the start. if tstoreInitialSupport { // Ensure that the reentrancy guard is not currently set. if tload(_REENTRANCY_GUARD_SLOT) { // Store left-padded selector with push4, // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert(Error_selector_offset, NoReentrantCalls_error_length) } } // Handle cases where tstore is not initially supported. if iszero(tstoreInitialSupport) { // Retrieve the reentrancy guard sentinel value. let reentrancyGuard := sload(_REENTRANCY_GUARD_SLOT) // 2: handle tstore support that was activated post-deployment. if iszero(reentrancyGuard) { // Ensure that the reentrancy guard is not currently set. if tload(_REENTRANCY_GUARD_SLOT) { // Store left-padded selector with push4, // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert( Error_selector_offset, NoReentrantCalls_error_length ) } } // 3: handle case where tstore support has not been activated. // Ensure that the reentrancy guard is not currently set. if gt(reentrancyGuard, _NOT_ENTERED_SSTORE) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, NoReentrantCalls_error_selector) // revert(abi.encodeWithSignature("NoReentrantCalls()")) revert(Error_selector_offset, NoReentrantCalls_error_length) } } } } /** * @dev Internal view function to ensure that the sentinel value indicating * native tokens may be received during execution is currently set. */ function _assertAcceptingNativeTokens() internal view { // Place immutable variable on the stack access within inline assembly. bool tstoreInitialSupport = _tstoreInitialSupport; // Utilize assembly to check reentrancy guard based on tstore support. assembly { // 1: handle case where tstore is supported from the start. if tstoreInitialSupport { // Ensure reentrancy guard is set to accept native tokens. if iszero( eq( tload(_REENTRANCY_GUARD_SLOT), _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_TSTORE ) ) { // Store left-padded selector with push4, // mem[28:32] = selector mstore(0, InvalidMsgValue_error_selector) // Store argument. mstore(InvalidMsgValue_error_value_ptr, callvalue()) // revert(abi.encodeWithSignature( // "InvalidMsgValue(uint256)", value) // ) revert(Error_selector_offset, InvalidMsgValue_error_length) } } // Handle cases where tstore is not initially supported. if iszero(tstoreInitialSupport) { // Retrieve the reentrancy guard sentinel value. let reentrancyGuard := sload(_REENTRANCY_GUARD_SLOT) // 2: handle tstore support that was activated post-deployment. if iszero(reentrancyGuard) { // Ensure reentrancy guard is set to accept native tokens. if iszero( eq( tload(_REENTRANCY_GUARD_SLOT), _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_TSTORE ) ) { // Store left-padded selector with push4, // mem[28:32] = selector mstore(0, InvalidMsgValue_error_selector) // Store argument. mstore(InvalidMsgValue_error_value_ptr, callvalue()) // revert(abi.encodeWithSignature( // "InvalidMsgValue(uint256)", value) // ) revert( Error_selector_offset, InvalidMsgValue_error_length ) } } // 3: handle case where tstore support has not been activated. // Ensure reentrancy guard is set to accepting native tokens. if and( iszero(iszero(reentrancyGuard)), iszero( eq( reentrancyGuard, _ENTERED_AND_ACCEPTING_NATIVE_TOKENS_SSTORE ) ) ) { // Store left-padded selector with push4 (reduces bytecode), // mem[28:32] = selector mstore(0, InvalidMsgValue_error_selector) // Store argument. mstore(InvalidMsgValue_error_value_ptr, callvalue()) // revert(abi.encodeWithSignature( // "InvalidMsgValue(uint256)", value) // ) revert(Error_selector_offset, InvalidMsgValue_error_length) } } } } /** * @dev Private function to deploy a test contract that utilizes TLOAD as * part of its fallback logic. */ function _prepareTloadTest() private returns (address contractAddress) { // Utilize assembly to deploy a contract testing TLOAD support. assembly { // Write the contract deployment code payload to scratch space. mstore(0, _TLOAD_TEST_PAYLOAD) // Deploy the contract. contractAddress := create( 0, _TLOAD_TEST_PAYLOAD_OFFSET, _TLOAD_TEST_PAYLOAD_LENGTH ) } } /** * @dev Private view function to determine if TSTORE/TLOAD are supported by * the current EVM implementation by attempting to call the test * contract, which utilizes TLOAD as part of its fallback logic. */ function _testTload( address tloadTestContract ) private view returns (bool ok) { // Call the test contract, which will perform a TLOAD test. If the call // does not revert, then TLOAD/TSTORE is supported. Do not forward all // available gas, as all forwarded gas will be consumed on revert. (ok, ) = tloadTestContract.staticcall{ gas: gasleft() / 10 }(""); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title ConduitControllerInterface * @author 0age * @notice ConduitControllerInterface contains all external function interfaces, * structs, events, and errors for the conduit controller. */ interface ConduitControllerInterface { /** * @dev Track the conduit key, current owner, new potential owner, and open * channels for each deployed conduit. */ struct ConduitProperties { bytes32 key; address owner; address potentialOwner; address[] channels; mapping(address => uint256) channelIndexesPlusOne; } /** * @dev Emit an event whenever a new conduit is created. * * @param conduit The newly created conduit. * @param conduitKey The conduit key used to create the new conduit. */ event NewConduit(address conduit, bytes32 conduitKey); /** * @dev Emit an event whenever conduit ownership is transferred. * * @param conduit The conduit for which ownership has been * transferred. * @param previousOwner The previous owner of the conduit. * @param newOwner The new owner of the conduit. */ event OwnershipTransferred( address indexed conduit, address indexed previousOwner, address indexed newOwner ); /** * @dev Emit an event whenever a conduit owner registers a new potential * owner for that conduit. * * @param newPotentialOwner The new potential owner of the conduit. */ event PotentialOwnerUpdated(address indexed newPotentialOwner); /** * @dev Revert with an error when attempting to create a new conduit using a * conduit key where the first twenty bytes of the key do not match the * address of the caller. */ error InvalidCreator(); /** * @dev Revert with an error when attempting to create a new conduit when no * initial owner address is supplied. */ error InvalidInitialOwner(); /** * @dev Revert with an error when attempting to set a new potential owner * that is already set. */ error NewPotentialOwnerAlreadySet( address conduit, address newPotentialOwner ); /** * @dev Revert with an error when attempting to cancel ownership transfer * when no new potential owner is currently set. */ error NoPotentialOwnerCurrentlySet(address conduit); /** * @dev Revert with an error when attempting to interact with a conduit that * does not yet exist. */ error NoConduit(); /** * @dev Revert with an error when attempting to create a conduit that * already exists. */ error ConduitAlreadyExists(address conduit); /** * @dev Revert with an error when attempting to update channels or transfer * ownership of a conduit when the caller is not the owner of the * conduit in question. */ error CallerIsNotOwner(address conduit); /** * @dev Revert with an error when attempting to register a new potential * owner and supplying the null address. */ error NewPotentialOwnerIsZeroAddress(address conduit); /** * @dev Revert with an error when attempting to claim ownership of a conduit * with a caller that is not the current potential owner for the * conduit in question. */ error CallerIsNotNewPotentialOwner(address conduit); /** * @dev Revert with an error when attempting to retrieve a channel using an * index that is out of range. */ error ChannelOutOfRange(address conduit); /** * @notice Deploy a new conduit using a supplied conduit key and assigning * an initial owner for the deployed conduit. Note that the first * twenty bytes of the supplied conduit key must match the caller * and that a new conduit cannot be created if one has already been * deployed using the same conduit key. * * @param conduitKey The conduit key used to deploy the conduit. Note that * the first twenty bytes of the conduit key must match * the caller of this contract. * @param initialOwner The initial owner to set for the new conduit. * * @return conduit The address of the newly deployed conduit. */ function createConduit( bytes32 conduitKey, address initialOwner ) external returns (address conduit); /** * @notice Open or close a channel on a given conduit, thereby allowing the * specified account to execute transfers against that conduit. * Extreme care must be taken when updating channels, as malicious * or vulnerable channels can transfer any ERC20, ERC721 and ERC1155 * tokens where the token holder has granted the conduit approval. * Only the owner of the conduit in question may call this function. * * @param conduit The conduit for which to open or close the channel. * @param channel The channel to open or close on the conduit. * @param isOpen A boolean indicating whether to open or close the channel. */ function updateChannel( address conduit, address channel, bool isOpen ) external; /** * @notice Initiate conduit ownership transfer by assigning a new potential * owner for the given conduit. Once set, the new potential owner * may call `acceptOwnership` to claim ownership of the conduit. * Only the owner of the conduit in question may call this function. * * @param conduit The conduit for which to initiate ownership transfer. * @param newPotentialOwner The new potential owner of the conduit. */ function transferOwnership( address conduit, address newPotentialOwner ) external; /** * @notice Clear the currently set potential owner, if any, from a conduit. * Only the owner of the conduit in question may call this function. * * @param conduit The conduit for which to cancel ownership transfer. */ function cancelOwnershipTransfer(address conduit) external; /** * @notice Accept ownership of a supplied conduit. Only accounts that the * current owner has set as the new potential owner may call this * function. * * @param conduit The conduit for which to accept ownership. */ function acceptOwnership(address conduit) external; /** * @notice Retrieve the current owner of a deployed conduit. * * @param conduit The conduit for which to retrieve the associated owner. * * @return owner The owner of the supplied conduit. */ function ownerOf(address conduit) external view returns (address owner); /** * @notice Retrieve the conduit key for a deployed conduit via reverse * lookup. * * @param conduit The conduit for which to retrieve the associated conduit * key. * * @return conduitKey The conduit key used to deploy the supplied conduit. */ function getKey(address conduit) external view returns (bytes32 conduitKey); /** * @notice Derive the conduit associated with a given conduit key and * determine whether that conduit exists (i.e. whether it has been * deployed). * * @param conduitKey The conduit key used to derive the conduit. * * @return conduit The derived address of the conduit. * @return exists A boolean indicating whether the derived conduit has been * deployed or not. */ function getConduit( bytes32 conduitKey ) external view returns (address conduit, bool exists); /** * @notice Retrieve the potential owner, if any, for a given conduit. The * current owner may set a new potential owner via * `transferOwnership` and that owner may then accept ownership of * the conduit in question via `acceptOwnership`. * * @param conduit The conduit for which to retrieve the potential owner. * * @return potentialOwner The potential owner, if any, for the conduit. */ function getPotentialOwner( address conduit ) external view returns (address potentialOwner); /** * @notice Retrieve the status (either open or closed) of a given channel on * a conduit. * * @param conduit The conduit for which to retrieve the channel status. * @param channel The channel for which to retrieve the status. * * @return isOpen The status of the channel on the given conduit. */ function getChannelStatus( address conduit, address channel ) external view returns (bool isOpen); /** * @notice Retrieve the total number of open channels for a given conduit. * * @param conduit The conduit for which to retrieve the total channel count. * * @return totalChannels The total number of open channels for the conduit. */ function getTotalChannels( address conduit ) external view returns (uint256 totalChannels); /** * @notice Retrieve an open channel at a specific index for a given conduit. * Note that the index of a channel can change as a result of other * channels being closed on the conduit. * * @param conduit The conduit for which to retrieve the open channel. * @param channelIndex The index of the channel in question. * * @return channel The open channel, if any, at the specified channel index. */ function getChannel( address conduit, uint256 channelIndex ) external view returns (address channel); /** * @notice Retrieve all open channels for a given conduit. Note that calling * this function for a conduit with many channels will revert with * an out-of-gas error. * * @param conduit The conduit for which to retrieve open channels. * * @return channels An array of open channels on the given conduit. */ function getChannels( address conduit ) external view returns (address[] memory channels); /** * @dev Retrieve the conduit creation code and runtime code hashes. */ function getConduitCodeHashes() external view returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; import { AdvancedOrder, ConsiderationItem, CriteriaResolver, Fulfillment, FulfillmentComponent, OfferItem, Order, OrderParameters, ReceivedItem } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { AdvancedOrder_denominator_offset, AdvancedOrder_extraData_offset, AdvancedOrder_fixed_segment_0, AdvancedOrder_head_size, AdvancedOrder_numerator_offset, AdvancedOrder_signature_offset, AdvancedOrderPlusOrderParameters_head_size, Common_amount_offset, Common_endAmount_offset, Common_identifier_offset, Common_token_offset, ConsiderationItem_recipient_offset, ConsiderationItem_size_with_head_pointer, ConsiderationItem_size, CriteriaResolver_criteriaProof_offset, CriteriaResolver_fixed_segment_0, CriteriaResolver_head_size, ThreeWords, FreeMemoryPointerSlot, Fulfillment_considerationComponents_offset, Fulfillment_head_size, FulfillmentComponent_mem_tail_size_shift, FulfillmentComponent_mem_tail_size, generateOrder_maximum_returned_array_length, OfferItem_size_with_head_pointer, OfferItem_size, OneWord, OneWordShift, OnlyFullWordMask, Order_head_size, Order_signature_offset, OrderComponents_OrderParameters_common_head_size, OrderParameters_consideration_head_offset, OrderParameters_head_size, OrderParameters_offer_head_offset, OrderParameters_totalOriginalConsiderationItems_offset, ReceivedItem_recipient_offset, ReceivedItem_size, ReceivedItem_size_excluding_recipient, SpentItem_size_shift, SpentItem_size, ThirtyOneBytes, TwoWords } from "seaport-types/src/lib/ConsiderationConstants.sol"; import { CalldataPointer, malloc, MemoryPointer, OffsetOrLengthMask } from "seaport-types/src/helpers/PointerLibraries.sol"; contract ConsiderationDecoder { /** * @dev Takes a bytes array from calldata and copies it into memory. * * @param cdPtrLength A calldata pointer to the start of the bytes array in * calldata which contains the length of the array. * * @return mPtrLength A memory pointer to the start of the bytes array in * memory which contains the length of the array. */ function _decodeBytes( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { assembly { // Get the current free memory pointer. mPtrLength := mload(FreeMemoryPointerSlot) // Derive the size of the bytes array, rounding up to nearest word // and adding a word for the length field. Note: masking // `calldataload(cdPtrLength)` is redundant here. let size := add( and( add(calldataload(cdPtrLength), ThirtyOneBytes), OnlyFullWordMask ), OneWord ) // Copy bytes from calldata into memory based on pointers and size. calldatacopy(mPtrLength, cdPtrLength, size) // Store the masked value in memory. Note: the value of `size` is at // least 32, meaning the calldatacopy above will at least write to // `[mPtrLength, mPtrLength + 32)`. mstore( mPtrLength, and(calldataload(cdPtrLength), OffsetOrLengthMask) ) // Update free memory pointer based on the size of the bytes array. mstore(FreeMemoryPointerSlot, add(mPtrLength, size)) } } /** * @dev Takes an offer array from calldata and copies it into memory. * * @param cdPtrLength A calldata pointer to the start of the offer array * in calldata which contains the length of the array. * * @return mPtrLength A memory pointer to the start of the offer array in * memory which contains the length of the array. */ function _decodeOffer( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { assembly { // Retrieve length of array, masking to prevent potential overflow. let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask) // Get the current free memory pointer. mPtrLength := mload(FreeMemoryPointerSlot) // Write the array length to memory. mstore(mPtrLength, arrLength) // Derive the head by adding one word to the length pointer. let mPtrHead := add(mPtrLength, OneWord) // Derive the tail by adding one word per element (note that structs // are written to memory with an offset per struct element). let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength)) // Track the next tail, beginning with the initial tail value. let mPtrTailNext := mPtrTail // Copy all offer array data into memory at the tail pointer. calldatacopy( mPtrTail, add(cdPtrLength, OneWord), mul(arrLength, OfferItem_size) ) // Track the next head pointer, starting with initial head value. let mPtrHeadNext := mPtrHead // Iterate over each head pointer until it reaches the tail. for { } lt(mPtrHeadNext, mPtrTail) { } { // Write the next tail pointer to next head pointer in memory. mstore(mPtrHeadNext, mPtrTailNext) // Increment the next head pointer by one word. mPtrHeadNext := add(mPtrHeadNext, OneWord) // Increment the next tail pointer by the size of an offer item. mPtrTailNext := add(mPtrTailNext, OfferItem_size) } // Update free memory pointer to allocate memory up to end of tail. mstore(FreeMemoryPointerSlot, mPtrTailNext) } } /** * @dev Takes a consideration array from calldata and copies it into memory. * * @param cdPtrLength A calldata pointer to the start of the consideration * array in calldata which contains the length of the * array. * * @return mPtrLength A memory pointer to the start of the consideration * array in memory which contains the length of the * array. */ function _decodeConsideration( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { assembly { // Retrieve length of array, masking to prevent potential overflow. let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask) // Get the current free memory pointer. mPtrLength := mload(FreeMemoryPointerSlot) // Write the array length to memory. mstore(mPtrLength, arrLength) // Derive the head by adding one word to the length pointer. let mPtrHead := add(mPtrLength, OneWord) // Derive the tail by adding one word per element (note that structs // are written to memory with an offset per struct element). let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength)) // Track the next tail, beginning with the initial tail value. let mPtrTailNext := mPtrTail // Copy all consideration array data into memory at tail pointer. calldatacopy( mPtrTail, add(cdPtrLength, OneWord), mul(arrLength, ConsiderationItem_size) ) // Track the next head pointer, starting with initial head value. let mPtrHeadNext := mPtrHead // Iterate over each head pointer until it reaches the tail. for { } lt(mPtrHeadNext, mPtrTail) { } { // Write the next tail pointer to next head pointer in memory. mstore(mPtrHeadNext, mPtrTailNext) // Increment the next head pointer by one word. mPtrHeadNext := add(mPtrHeadNext, OneWord) // Increment next tail pointer by size of a consideration item. mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size) } // Update free memory pointer to allocate memory up to end of tail. mstore(FreeMemoryPointerSlot, mPtrTailNext) } } /** * @dev Takes a calldata pointer and memory pointer and copies a referenced * OrderParameters struct and associated offer and consideration data * to memory. * * @param cdPtr A calldata pointer for the OrderParameters struct. * @param mPtr A memory pointer to the OrderParameters struct head. */ function _decodeOrderParametersTo( CalldataPointer cdPtr, MemoryPointer mPtr ) internal pure { // Copy the full OrderParameters head from calldata to memory. cdPtr.copy(mPtr, OrderParameters_head_size); // Resolve the offer calldata offset, use that to decode and copy offer // from calldata, and write resultant memory offset to head in memory. mPtr.offset(OrderParameters_offer_head_offset).write( _decodeOffer(cdPtr.pptrOffset(OrderParameters_offer_head_offset)) ); // Resolve consideration calldata offset, use that to copy consideration // from calldata, and write resultant memory offset to head in memory. mPtr.offset(OrderParameters_consideration_head_offset).write( _decodeConsideration( cdPtr.pptrOffset(OrderParameters_consideration_head_offset) ) ); } /** * @dev Takes a calldata pointer to an OrderParameters struct and copies the * decoded struct to memory. * * @param cdPtr A calldata pointer for the OrderParameters struct. * * @return mPtr A memory pointer to the OrderParameters struct head. */ function _decodeOrderParameters( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate required memory for the OrderParameters head (offer and // consideration are allocated independently). mPtr = malloc(OrderParameters_head_size); // Decode and copy the order parameters to the newly allocated memory. _decodeOrderParametersTo(cdPtr, mPtr); } /** * @dev Takes a calldata pointer to an Order struct and copies the decoded * struct to memory. * * @param cdPtr A calldata pointer for the Order struct. * * @return mPtr A memory pointer to the Order struct head. */ function _decodeOrder( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate required memory for the Order head (OrderParameters and // signature are allocated independently). mPtr = malloc(Order_head_size); // Resolve OrderParameters calldata offset, use it to decode and copy // from calldata, and write resultant memory offset to head in memory. mPtr.write(_decodeOrderParameters(cdPtr.pptr())); // Resolve signature calldata offset, use that to decode and copy from // calldata, and write resultant memory offset to head in memory. mPtr.offset(Order_signature_offset).write( _decodeBytes(cdPtr.pptrOffset(Order_signature_offset)) ); } /** * @dev Takes a calldata pointer to an AdvancedOrder struct and copies the * decoded struct to memory. * * @param cdPtr A calldata pointer for the AdvancedOrder struct. * * @return mPtr A memory pointer to the AdvancedOrder struct head. */ function _decodeAdvancedOrder( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate memory for AdvancedOrder head and OrderParameters head. mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size); // Use numerator + denominator calldata offset to decode and copy // from calldata and write resultant memory offset to head in memory. cdPtr.offset(AdvancedOrder_numerator_offset).copy( mPtr.offset(AdvancedOrder_numerator_offset), AdvancedOrder_fixed_segment_0 ); // Get pointer to memory immediately after advanced order. MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size); // Write pptr for advanced order parameters to memory. mPtr.write(mPtrParameters); // Resolve OrderParameters calldata pointer & write to allocated region. _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters); // Resolve signature calldata offset, use that to decode and copy from // calldata, and write resultant memory offset to head in memory. mPtr.offset(AdvancedOrder_signature_offset).write( _decodeBytes(cdPtr.pptrOffset(AdvancedOrder_signature_offset)) ); // Resolve extraData calldata offset, use that to decode and copy from // calldata, and write resultant memory offset to head in memory. mPtr.offset(AdvancedOrder_extraData_offset).write( _decodeBytes(cdPtr.pptrOffset(AdvancedOrder_extraData_offset)) ); } /** * @dev Allocates a single word of empty bytes in memory and returns the * pointer to that memory region. * * @return mPtr The memory pointer to the new empty word in memory. */ function _getEmptyBytesOrArray() internal pure returns (MemoryPointer mPtr) { mPtr = malloc(OneWord); mPtr.write(0); } /** * @dev Takes a calldata pointer to an Order struct and copies the decoded * struct to memory as an AdvancedOrder. * * @param cdPtr A calldata pointer for the Order struct. * * @return mPtr A memory pointer to the AdvancedOrder struct head. */ function _decodeOrderAsAdvancedOrder( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate memory for AdvancedOrder head and OrderParameters head. mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size); // Get pointer to memory immediately after advanced order. MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size); // Write pptr for advanced order parameters. mPtr.write(mPtrParameters); // Resolve OrderParameters calldata pointer & write to allocated region. _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters); // Write default Order numerator and denominator values (i.e. 1/1). mPtr.offset(AdvancedOrder_numerator_offset).write(1); mPtr.offset(AdvancedOrder_denominator_offset).write(1); // Resolve signature calldata offset, use that to decode and copy from // calldata, and write resultant memory offset to head in memory. mPtr.offset(AdvancedOrder_signature_offset).write( _decodeBytes(cdPtr.pptrOffset(Order_signature_offset)) ); // Resolve extraData calldata offset, use that to decode and copy from // calldata, and write resultant memory offset to head in memory. mPtr.offset(AdvancedOrder_extraData_offset).write( _getEmptyBytesOrArray() ); } /** * @dev Takes a calldata pointer to an array of Order structs and copies the * decoded array to memory as an array of AdvancedOrder structs. * * @param cdPtrLength A calldata pointer to the start of the orders array in * calldata which contains the length of the array. * * @return mPtrLength A memory pointer to the start of the array of advanced * orders in memory which contains length of the array. */ function _decodeOrdersAsAdvancedOrders( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive offset to the tail based on one word per array element. uint256 tailOffset = arrLength << OneWordShift; // Add one additional word for the length and allocate memory. mPtrLength = malloc(tailOffset + OneWord); // Write the length of the array to memory. mPtrLength.write(arrLength); // Advance to first memory & calldata pointers (e.g. after length). MemoryPointer mPtrHead = mPtrLength.next(); CalldataPointer cdPtrHead = cdPtrLength.next(); // Iterate over each pointer, word by word, until tail is reached. for (uint256 offset = 0; offset < tailOffset; offset += OneWord) { // Resolve Order calldata offset, use it to decode and copy from // calldata, and write resultant AdvancedOrder offset to memory. mPtrHead.offset(offset).write( _decodeOrderAsAdvancedOrder(cdPtrHead.pptrOffset(offset)) ); } } } /** * @dev Takes a calldata pointer to a criteria proof, or an array bytes32 * types, and copies the decoded proof to memory. * * @param cdPtrLength A calldata pointer to the start of the criteria proof * in calldata which contains the length of the array. * * @return mPtrLength A memory pointer to the start of the criteria proof * in memory which contains length of the array. */ function _decodeCriteriaProof( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive array size based on one word per array element and length. uint256 arrSize = (arrLength + 1) << OneWordShift; // Allocate memory equal to the array size. mPtrLength = malloc(arrSize); // Copy the array from calldata into memory. cdPtrLength.copy(mPtrLength, arrSize); } } /** * @dev Takes a calldata pointer to a CriteriaResolver struct and copies the * decoded struct to memory. * * @param cdPtr A calldata pointer for the CriteriaResolver struct. * * @return mPtr A memory pointer to the CriteriaResolver struct head. */ function _decodeCriteriaResolver( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate required memory for the CriteriaResolver head (the criteria // proof bytes32 array is allocated independently). mPtr = malloc(CriteriaResolver_head_size); // Decode and copy order index, side, index, and identifier from // calldata and write resultant memory offset to head in memory. cdPtr.copy(mPtr, CriteriaResolver_fixed_segment_0); // Resolve criteria proof calldata offset, use it to decode and copy // from calldata, and write resultant memory offset to head in memory. mPtr.offset(CriteriaResolver_criteriaProof_offset).write( _decodeCriteriaProof( cdPtr.pptrOffset(CriteriaResolver_criteriaProof_offset) ) ); } /** * @dev Takes an array of criteria resolvers from calldata and copies it * into memory. * * @param cdPtrLength A calldata pointer to the start of the criteria * resolver array in calldata which contains the length * of the array. * * @return mPtrLength A memory pointer to the start of the criteria resolver * array in memory which contains the length of the * array. */ function _decodeCriteriaResolvers( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive offset to the tail based on one word per array element. uint256 tailOffset = arrLength << OneWordShift; // Add one additional word for the length and allocate memory. mPtrLength = malloc(tailOffset + OneWord); // Write the length of the array to memory. mPtrLength.write(arrLength); // Advance to first memory & calldata pointers (e.g. after length). MemoryPointer mPtrHead = mPtrLength.next(); CalldataPointer cdPtrHead = cdPtrLength.next(); // Iterate over each pointer, word by word, until tail is reached. for (uint256 offset = 0; offset < tailOffset; offset += OneWord) { // Resolve CriteriaResolver calldata offset, use it to decode // and copy from calldata, and write resultant memory offset. mPtrHead.offset(offset).write( _decodeCriteriaResolver(cdPtrHead.pptrOffset(offset)) ); } } } /** * @dev Takes an array of orders from calldata and copies it into memory. * * @param cdPtrLength A calldata pointer to the start of the orders array in * calldata which contains the length of the array. * * @return mPtrLength A memory pointer to the start of the orders array * in memory which contains the length of the array. */ function _decodeOrders( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive offset to the tail based on one word per array element. uint256 tailOffset = arrLength << OneWordShift; // Add one additional word for the length and allocate memory. mPtrLength = malloc(tailOffset + OneWord); // Write the length of the array to memory. mPtrLength.write(arrLength); // Advance to first memory & calldata pointers (e.g. after length). MemoryPointer mPtrHead = mPtrLength.next(); CalldataPointer cdPtrHead = cdPtrLength.next(); // Iterate over each pointer, word by word, until tail is reached. for (uint256 offset = 0; offset < tailOffset; offset += OneWord) { // Resolve Order calldata offset, use it to decode and copy // from calldata, and write resultant memory offset. mPtrHead.offset(offset).write( _decodeOrder(cdPtrHead.pptrOffset(offset)) ); } } } /** * @dev Takes an array of fulfillment components from calldata and copies it * into memory. * * @param cdPtrLength A calldata pointer to the start of the fulfillment * components array in calldata which contains the length * of the array. * * @return mPtrLength A memory pointer to the start of the fulfillment * components array in memory which contains the length * of the array. */ function _decodeFulfillmentComponents( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { assembly { let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask) // Get the current free memory pointer. mPtrLength := mload(FreeMemoryPointerSlot) mstore(mPtrLength, arrLength) let mPtrHead := add(mPtrLength, OneWord) let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength)) let mPtrTailNext := mPtrTail calldatacopy( mPtrTail, add(cdPtrLength, OneWord), shl(FulfillmentComponent_mem_tail_size_shift, arrLength) ) let mPtrHeadNext := mPtrHead for { } lt(mPtrHeadNext, mPtrTail) { } { mstore(mPtrHeadNext, mPtrTailNext) mPtrHeadNext := add(mPtrHeadNext, OneWord) mPtrTailNext := add( mPtrTailNext, FulfillmentComponent_mem_tail_size ) } // Update the free memory pointer. mstore(FreeMemoryPointerSlot, mPtrTailNext) } } /** * @dev Takes a nested array of fulfillment components from calldata and * copies it into memory. * * @param cdPtrLength A calldata pointer to the start of the nested * fulfillment components array in calldata which * contains the length of the array. * * @return mPtrLength A memory pointer to the start of the nested * fulfillment components array in memory which * contains the length of the array. */ function _decodeNestedFulfillmentComponents( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive offset to the tail based on one word per array element. uint256 tailOffset = arrLength << OneWordShift; // Add one additional word for the length and allocate memory. mPtrLength = malloc(tailOffset + OneWord); // Write the length of the array to memory. mPtrLength.write(arrLength); // Advance to first memory & calldata pointers (e.g. after length). MemoryPointer mPtrHead = mPtrLength.next(); CalldataPointer cdPtrHead = cdPtrLength.next(); // Iterate over each pointer, word by word, until tail is reached. for (uint256 offset = 0; offset < tailOffset; offset += OneWord) { // Resolve FulfillmentComponents array calldata offset, use it // to decode and copy from calldata, and write memory offset. mPtrHead.offset(offset).write( _decodeFulfillmentComponents(cdPtrHead.pptrOffset(offset)) ); } } } /** * @dev Takes an array of advanced orders from calldata and copies it into * memory. * * @param cdPtrLength A calldata pointer to the start of the advanced orders * array in calldata which contains the length of the * array. * * @return mPtrLength A memory pointer to the start of the advanced orders * array in memory which contains the length of the * array. */ function _decodeAdvancedOrders( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive offset to the tail based on one word per array element. uint256 tailOffset = arrLength << OneWordShift; // Add one additional word for the length and allocate memory. mPtrLength = malloc(tailOffset + OneWord); // Write the length of the array to memory. mPtrLength.write(arrLength); // Advance to first memory & calldata pointers (e.g. after length). MemoryPointer mPtrHead = mPtrLength.next(); CalldataPointer cdPtrHead = cdPtrLength.next(); // Iterate over each pointer, word by word, until tail is reached. for (uint256 offset = 0; offset < tailOffset; offset += OneWord) { // Resolve AdvancedOrder calldata offset, use it to decode and // copy from calldata, and write resultant memory offset. mPtrHead.offset(offset).write( _decodeAdvancedOrder(cdPtrHead.pptrOffset(offset)) ); } } } /** * @dev Takes a calldata pointer to a Fulfillment struct and copies the * decoded struct to memory. * * @param cdPtr A calldata pointer for the Fulfillment struct. * * @return mPtr A memory pointer to the Fulfillment struct head. */ function _decodeFulfillment( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate required memory for the Fulfillment head (the fulfillment // components arrays are allocated independently). mPtr = malloc(Fulfillment_head_size); // Resolve offerComponents calldata offset, use it to decode and copy // from calldata, and write resultant memory offset to head in memory. mPtr.write(_decodeFulfillmentComponents(cdPtr.pptr())); // Resolve considerationComponents calldata offset, use it to decode and // copy from calldata, and write resultant memory offset to memory head. mPtr.offset(Fulfillment_considerationComponents_offset).write( _decodeFulfillmentComponents( cdPtr.pptrOffset(Fulfillment_considerationComponents_offset) ) ); } /** * @dev Takes an array of fulfillments from calldata and copies it into * memory. * * @param cdPtrLength A calldata pointer to the start of the fulfillments * array in calldata which contains the length of the * array. * * @return mPtrLength A memory pointer to the start of the fulfillments * array in memory which contains the length of the * array. */ function _decodeFulfillments( CalldataPointer cdPtrLength ) internal pure returns (MemoryPointer mPtrLength) { // Retrieve length of array, masking to prevent potential overflow. uint256 arrLength = cdPtrLength.readMaskedUint256(); unchecked { // Derive offset to the tail based on one word per array element. uint256 tailOffset = arrLength << OneWordShift; // Add one additional word for the length and allocate memory. mPtrLength = malloc(tailOffset + OneWord); // Write the length of the array to memory. mPtrLength.write(arrLength); // Advance to first memory & calldata pointers (e.g. after length). MemoryPointer mPtrHead = mPtrLength.next(); CalldataPointer cdPtrHead = cdPtrLength.next(); // Iterate over each pointer, word by word, until tail is reached. for (uint256 offset = 0; offset < tailOffset; offset += OneWord) { // Resolve Fulfillment calldata offset, use it to decode and // copy from calldata, and write resultant memory offset. mPtrHead.offset(offset).write( _decodeFulfillment(cdPtrHead.pptrOffset(offset)) ); } } } /** * @dev Takes a calldata pointer to an OrderComponents struct and copies the * decoded struct to memory as an OrderParameters struct (with the * totalOriginalConsiderationItems value set equal to the length of the * supplied consideration array). * * @param cdPtr A calldata pointer for the OrderComponents struct. * * @return mPtr A memory pointer to the OrderParameters struct head. */ function _decodeOrderComponentsAsOrderParameters( CalldataPointer cdPtr ) internal pure returns (MemoryPointer mPtr) { // Allocate memory for the OrderParameters head. mPtr = malloc(OrderParameters_head_size); // Copy the full OrderComponents head from calldata to memory. cdPtr.copy(mPtr, OrderComponents_OrderParameters_common_head_size); // Resolve the offer calldata offset, use that to decode and copy offer // from calldata, and write resultant memory offset to head in memory. mPtr.offset(OrderParameters_offer_head_offset).write( _decodeOffer(cdPtr.pptrOffset(OrderParameters_offer_head_offset)) ); // Resolve consideration calldata offset, use that to copy consideration // from calldata, and write resultant memory offset to head in memory. MemoryPointer consideration = _decodeConsideration( cdPtr.pptrOffset(OrderParameters_consideration_head_offset) ); mPtr.offset(OrderParameters_consideration_head_offset).write( consideration ); // Write masked consideration length to totalOriginalConsiderationItems. mPtr .offset(OrderParameters_totalOriginalConsiderationItems_offset) .write(consideration.readUint256()); } /** * @dev Decodes the returndata from a call to generateOrder, or returns * empty arrays and a boolean signifying that the returndata does not * adhere to a valid encoding scheme if it cannot be decoded. Note * that this function expects that original offer and consideration * item arrays have been modified and repurposed to resemble spent * and received item arrays; specifically, the recipient should be * in the endAmount location on consideration items and the derived * amount should be in the startAmount location for both item types. * * @return invalidEncoding A boolean signifying whether the returndata has * an invalid encoding. * @return offer The decoded offer array. * @return consideration The decoded consideration array. */ function _decodeGenerateOrderReturndata( MemoryPointer originalOffer, MemoryPointer originalConsideration ) internal pure returns ( uint256 invalidEncoding, MemoryPointer offer, MemoryPointer consideration ) { assembly { // Check that returndatasize is at least three words: // 1. offerOffset // 2. considerationOffset // 3. offerLength & considerationLength might occupy just one word // if offerOffset & considerationOffset would point to the same // offset and the arrays have length 0. invalidEncoding := lt(returndatasize(), ThreeWords) let offsetOffer let offsetConsideration let offerLength let considerationLength // Proceed if enough returndata is present to continue evaluation. if iszero(invalidEncoding) { // Copy first two words of returndata (the offsets to offer and // consideration array lengths) to scratch space. returndatacopy(0, 0, TwoWords) offsetOffer := mload(0) offsetConsideration := mload(OneWord) // If valid length, check that offsets word boundaries are // within returndata. let invalidOfferOffset := gt( add(offsetOffer, OneWord), returndatasize() ) let invalidConsiderationOffset := gt( add(offsetConsideration, OneWord), returndatasize() ) // Only proceed if length (and thus encoding) is valid so far. invalidEncoding := or( invalidOfferOffset, invalidConsiderationOffset ) if iszero(invalidEncoding) { // Copy length of offer array to scratch space. returndatacopy(0, offsetOffer, OneWord) offerLength := mload(0) // Copy length of consideration array to scratch space. returndatacopy(OneWord, offsetConsideration, OneWord) considerationLength := mload(OneWord) { // Derive end offsets for offer & consideration arrays. let offerEndOffset := add( add(offsetOffer, OneWord), shl(SpentItem_size_shift, offerLength) ) let considerationEndOffset := add( add(offsetConsideration, OneWord), mul(ReceivedItem_size, considerationLength) ) // Don't continue if either offer or consideration // length exceeds 65535 or if returndatasize is less // than the end offsets. invalidEncoding := or( gt( or(offerLength, considerationLength), generateOrder_maximum_returned_array_length ), or( lt(returndatasize(), offerEndOffset), lt(returndatasize(), considerationEndOffset) ) ) // Set first word of scratch space to 0 so length of // offer/consideration are set to 0 on invalid encoding. mstore(0, 0) } } } if iszero(invalidEncoding) { let invalidSpentItems, invalidReceivedItems offer, invalidSpentItems := copySpentItemsAsOfferItems( originalOffer, add(offsetOffer, OneWord), offerLength ) consideration, invalidReceivedItems := copyReceivedItemsAsConsiderationItems( originalConsideration, add(offsetConsideration, OneWord), considerationLength ) invalidEncoding := or(invalidSpentItems, invalidReceivedItems) } function copySpentItemsAsOfferItems( mPtrLengthOriginal, rdPtrHeadSpentItems, length ) -> mPtrLength, invalidSpentItems { // Retrieve the current free memory pointer. mPtrLength := mload(FreeMemoryPointerSlot) // Cache the original offer array length let originalOfferLength := mload(mPtrLengthOriginal) // Allocate memory for the new array. mstore( FreeMemoryPointerSlot, add( mPtrLength, add( OneWord, mul(length, OfferItem_size_with_head_pointer) ) ) ) // Write the length of the array to the start of free memory. mstore(mPtrLength, length) // Use offset from length to minimize stack depth. let headOffsetFromLength := OneWord let headSizeWithLength := shl(OneWordShift, add(1, length)) let mPtrTailNext := add(mPtrLength, headSizeWithLength) let mPtrTailOriginalNext := add( mPtrLengthOriginal, shl(OneWordShift, add(1, originalOfferLength)) ) let headSizeToCompareWithLength := shl( OneWordShift, add(1, min(length, originalOfferLength)) ) // Iterate over each new element with a corresponding original // item. For each original offer item, check that: // - There is a corresponding new spent item. // - The original and new items match with compareItems. // - The new offer item amount >= original amount. invalidSpentItems := gt(originalOfferLength, length) for { } lt(headOffsetFromLength, headSizeToCompareWithLength) { } { // Write the memory pointer to the accompanying head offset. mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext) // Copy itemType, token, identifier and amount. returndatacopy( mPtrTailNext, rdPtrHeadSpentItems, SpentItem_size ) let newAmount := mload( add(mPtrTailNext, Common_amount_offset) ) // Copy amount to endAmount. mstore( add(mPtrTailNext, Common_endAmount_offset), newAmount ) let originalAmount := mload( add(mPtrTailOriginalNext, Common_amount_offset) ) invalidSpentItems := or( invalidSpentItems, or( compareItems(mPtrTailOriginalNext, mPtrTailNext), gt(originalAmount, newAmount) ) ) // Update read pointer, next tail pointer for new and // original, and head offset. rdPtrHeadSpentItems := add( rdPtrHeadSpentItems, SpentItem_size ) mPtrTailNext := add(mPtrTailNext, OfferItem_size) mPtrTailOriginalNext := add( mPtrTailOriginalNext, OfferItem_size ) headOffsetFromLength := add(headOffsetFromLength, OneWord) } // Iterate over each element without corresponding original item for { } lt(headOffsetFromLength, headSizeWithLength) { } { // Write the memory pointer to the accompanying head offset. mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext) // Copy itemType, token, identifier and amount. returndatacopy( mPtrTailNext, rdPtrHeadSpentItems, SpentItem_size ) // Copy amount to endAmount. mstore( add(mPtrTailNext, Common_endAmount_offset), mload(add(mPtrTailNext, Common_amount_offset)) ) // Update read pointer, next tail pointer, and head offset. rdPtrHeadSpentItems := add( rdPtrHeadSpentItems, SpentItem_size ) mPtrTailNext := add(mPtrTailNext, OfferItem_size) headOffsetFromLength := add(headOffsetFromLength, OneWord) } } function copyReceivedItemsAsConsiderationItems( mPtrLengthOriginal, rdPtrHeadReceivedItems, length ) -> mPtrLength, invalidReceivedItems { // Retrieve the current free memory pointer. mPtrLength := mload(FreeMemoryPointerSlot) // Cache the original consideration array length let originalConsiderationLength := mload(mPtrLengthOriginal) // Ensure returned array length does not exceed original length. invalidReceivedItems := gt(length, originalConsiderationLength) // Derive the length of the new array in memory, capped by the // original consideration array length. let newLength := min(length, originalConsiderationLength) // Allocate memory for the array. Note that memory does not need // to be allocated for new elements without a corresponding // original item as the new array will be invalid if its length // exceeds the original array length. mstore( FreeMemoryPointerSlot, add( mPtrLength, add( OneWord, mul( newLength, ConsiderationItem_size_with_head_pointer ) ) ) ) // Write the length of the array to the start of free memory. mstore(mPtrLength, newLength) // Use offset from length to minimize stack depth. let headOffsetFromLength := OneWord let mPtrTailNext := add( mPtrLength, shl(OneWordShift, add(1, newLength)) ) let mPtrTailOriginalNext := add( mPtrLengthOriginal, shl(OneWordShift, add(1, originalConsiderationLength)) ) let headSizeToCompareWithLength := shl( OneWordShift, add(1, newLength) ) // Iterate over each new element with a corresponding original // item. For each new received item, check that: // - The new & original items match according to compareItems. // - The new consideration item amount <= the original amount. // - The items have the same recipient if original != null. for { } lt(headOffsetFromLength, headSizeToCompareWithLength) { } { // Write the memory pointer to the accompanying head offset. mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext) // Copy itemType, token, identifier, amount and recipient. returndatacopy( mPtrTailNext, rdPtrHeadReceivedItems, ReceivedItem_size ) // Copy amount to consideration item's recipient offset. returndatacopy( add(mPtrTailNext, ConsiderationItem_recipient_offset), add(rdPtrHeadReceivedItems, Common_amount_offset), OneWord ) // Retrieve both the new and original item amounts. let newAmount := mload( add(mPtrTailNext, Common_amount_offset) ) let originalAmount := mload( add(mPtrTailOriginalNext, Common_amount_offset) ) // Compare items' item type, token, and identifier, ensure // they have the same recipient and that the new amount is // less than or equal to the original amount. The original // recipient must already be present at the ReceivedItem // recipient offset rather than at the initial // ConsiderationItem recipient offset. invalidReceivedItems := or( invalidReceivedItems, or( compareItems(mPtrTailOriginalNext, mPtrTailNext), or( gt(newAmount, originalAmount), checkRecipients( mload( add( mPtrTailOriginalNext, ReceivedItem_recipient_offset ) ), mload( add( mPtrTailNext, ReceivedItem_recipient_offset ) ) ) ) ) ) // Update read pointer, next tail pointer, and head offset. rdPtrHeadReceivedItems := add( rdPtrHeadReceivedItems, ReceivedItem_size ) mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size) mPtrTailOriginalNext := add( mPtrTailOriginalNext, ConsiderationItem_size ) headOffsetFromLength := add(headOffsetFromLength, OneWord) } // Note: skip copying new elements without a corresponding // original item as the new array will be invalid if its length // exceeds the original array length. } /** * @dev Yul function to check the compatibility of two offer or * consideration items for contract orders. Note that the * itemType and identifier are reset in cases where criteria is * equal to 0 (collection-wide or "wildcard" items), which * means that a contract offerer has full latitude to choose * any identifier it wants mid-flight, in contrast to the usual * behavior, where the fulfiller can pick which identifier to * receive by providing a CriteriaResolver. * * @param originalItem The original offer or consideration item. * @param newItem The new offer or consideration item. * * @return isInvalid Error buffer indicating whether or not the * items are incompatible. */ function compareItems(originalItem, newItem) -> isInvalid { let itemType := mload(originalItem) let identifier := mload( add(originalItem, Common_identifier_offset) ) // Use returned identifier for criteria-based items with a // criteria value of 0 (collection-wide or "wildcard" items). if and(gt(itemType, 3), iszero(identifier)) { // Replace item type with non-criteria equivalent. itemType := sub(itemType, 2) // Replace identifier with the returned identifier. identifier := mload(add(newItem, Common_identifier_offset)) } isInvalid := iszero( and( // originalItem.token == newItem.token && // originalItem.itemType == newItem.itemType and( eq( mload(add(originalItem, Common_token_offset)), mload(add(newItem, Common_token_offset)) ), eq(itemType, mload(newItem)) ), // originalItem.identifier == newItem.identifier eq( identifier, mload(add(newItem, Common_identifier_offset)) ) ) ) } /** * @dev Internal pure function to check the compatibility of two * recipients on consideration items for contract orders. This * check is skipped if no recipient is originally supplied. * * @param originalRecipient The original consideration item * recipient. * @param newRecipient The new consideration item recipient. * * @return isInvalid Error buffer indicating whether or not the * two recipients are incompatible. */ function checkRecipients(originalRecipient, newRecipient) -> isInvalid { isInvalid := iszero( or( iszero(originalRecipient), eq(newRecipient, originalRecipient) ) ) } function min(a, b) -> c { c := add(b, mul(lt(a, b), sub(a, b))) } } } /** * @dev Converts a function returning _decodeGenerateOrderReturndata types * into a function returning offer and consideration types. * * @param inFn The input function, taking no arguments and returning an * error buffer, spent item array, and received item array. * * @return outFn The output function, taking no arguments and returning an * error buffer, offer array, and consideration array. */ function _convertGetGeneratedOrderResult( function(MemoryPointer, MemoryPointer) internal pure returns (uint256, MemoryPointer, MemoryPointer) inFn ) internal pure returns ( function(OfferItem[] memory, ConsiderationItem[] memory) internal pure returns ( uint256, OfferItem[] memory, ConsiderationItem[] memory ) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes * types (e.g. the _transfer function) into a function taking * OfferItem, address, bytes32, and bytes types. * * @param inFn The input function, taking ReceivedItem, address, bytes32, * and bytes types (e.g. the _transfer function). * * @return outFn The output function, taking OfferItem, address, bytes32, * and bytes types. */ function _toOfferItemInput( function(ReceivedItem memory, address, bytes32, bytes memory) internal inFn ) internal pure returns ( function(OfferItem memory, address, bytes32, bytes memory) internal outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes * types (e.g. the _transfer function) into a function taking * ConsiderationItem, address, bytes32, and bytes types. * * @param inFn The input function, taking ReceivedItem, address, bytes32, * and bytes types (e.g. the _transfer function). * * @return outFn The output function, taking ConsiderationItem, address, * bytes32, and bytes types. */ function _toConsiderationItemInput( function(ReceivedItem memory, address, bytes32, bytes memory) internal inFn ) internal pure returns ( function(ConsiderationItem memory, address, bytes32, bytes memory) internal outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * a bytes type. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning a bytes type. */ function _toBytesReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (bytes memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * an OrderParameters type. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning an OrderParameters type. */ function _toOrderParametersReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (OrderParameters memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * an AdvancedOrder type. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning an AdvancedOrder type. */ function _toAdvancedOrderReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (AdvancedOrder memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * a dynamic array of CriteriaResolver types. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning a dynamic array of CriteriaResolver types. */ function _toCriteriaResolversReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (CriteriaResolver[] memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * a dynamic array of Order types. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning a dynamic array of Order types. */ function _toOrdersReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (Order[] memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * a nested dynamic array of dynamic arrays of FulfillmentComponent * types. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning a nested dynamic array of dynamic arrays of * FulfillmentComponent types. */ function _toNestedFulfillmentComponentsReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (FulfillmentComponent[][] memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * a dynamic array of AdvancedOrder types. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning a dynamic array of AdvancedOrder types. */ function _toAdvancedOrdersReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (AdvancedOrder[] memory) outFn ) { assembly { outFn := inFn } } /** * @dev Converts a function taking a calldata pointer and returning a memory * pointer into a function taking that calldata pointer and returning * a dynamic array of Fulfillment types. * * @param inFn The input function, taking an arbitrary calldata pointer and * returning an arbitrary memory pointer. * * @return outFn The output function, taking an arbitrary calldata pointer * and returning a dynamic array of Fulfillment types. */ function _toFulfillmentsReturnType( function(CalldataPointer) internal pure returns (MemoryPointer) inFn ) internal pure returns ( function(CalldataPointer) internal pure returns (Fulfillment[] memory) outFn ) { assembly { outFn := inFn } } /** * @dev Caches the endAmount in an offer item and replaces it with * a given recipient so that its memory may be reused as a temporary * ReceivedItem. * * @param offerItem The offer item. * @param recipient The recipient. * * @return originalEndAmount The original end amount. */ function _replaceEndAmountWithRecipient( OfferItem memory offerItem, address recipient ) internal pure returns (uint256 originalEndAmount) { assembly { // Derive the pointer to the end amount on the offer item. let endAmountPtr := add(offerItem, ReceivedItem_recipient_offset) // Retrieve the value of the end amount on the offer item. originalEndAmount := mload(endAmountPtr) // Write recipient to received item at the offer end amount pointer. mstore(endAmountPtr, recipient) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; /** * @title ReentrancyErrors * @author 0age * @notice ReentrancyErrors contains errors related to reentrancy. */ interface ReentrancyErrors { /** * @dev Revert with an error when a caller attempts to reenter a protected * function. */ error NoReentrantCalls(); /** * @dev Revert with an error when attempting to activate the TSTORE opcode * when it is already active. */ error TStoreAlreadyActivated(); /** * @dev Revert with an error when attempting to activate the TSTORE opcode * in an EVM environment that does not support it. */ error TStoreNotSupported(); /** * @dev Revert with an error when deployment of the contract for testing * TSTORE support fails. */ error TloadTestContractDeploymentFailed(); }
{ "remappings": [ "seaport-types/=lib/seaport-types/" ], "optimizer": { "enabled": true, "runs": 9999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": true, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"conduitController","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BadContractSignature","type":"error"},{"inputs":[],"name":"BadFraction","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BadReturnValueFromERC20OnTransfer","type":"error"},{"inputs":[{"internalType":"uint8","name":"v","type":"uint8"}],"name":"BadSignatureV","type":"error"},{"inputs":[],"name":"CannotCancelOrder","type":"error"},{"inputs":[],"name":"ConsiderationCriteriaResolverOutOfRange","type":"error"},{"inputs":[],"name":"ConsiderationLengthNotEqualToTotalOriginal","type":"error"},{"inputs":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"considerationIndex","type":"uint256"},{"internalType":"uint256","name":"shortfallAmount","type":"uint256"}],"name":"ConsiderationNotMet","type":"error"},{"inputs":[],"name":"CriteriaNotEnabledForItem","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"identifiers","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"ERC1155BatchTransferGenericFailure","type":"error"},{"inputs":[],"name":"InexactFraction","type":"error"},{"inputs":[],"name":"InsufficientNativeTokensSupplied","type":"error"},{"inputs":[],"name":"Invalid1155BatchTransferEncoding","type":"error"},{"inputs":[],"name":"InvalidBasicOrderParameterEncoding","type":"error"},{"inputs":[{"internalType":"address","name":"conduit","type":"address"}],"name":"InvalidCallToConduit","type":"error"},{"inputs":[{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"address","name":"conduit","type":"address"}],"name":"InvalidConduit","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"InvalidContractOrder","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"InvalidERC721TransferAmount","type":"error"},{"inputs":[],"name":"InvalidFulfillmentComponentData","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"InvalidMsgValue","type":"error"},{"inputs":[],"name":"InvalidNativeOfferItem","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"InvalidRestrictedOrder","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidSigner","type":"error"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"InvalidTime","type":"error"},{"inputs":[{"internalType":"uint256","name":"fulfillmentIndex","type":"uint256"}],"name":"MismatchedFulfillmentOfferAndConsiderationComponents","type":"error"},{"inputs":[{"internalType":"enum Side","name":"side","type":"uint8"}],"name":"MissingFulfillmentComponentOnAggregation","type":"error"},{"inputs":[],"name":"MissingItemAmount","type":"error"},{"inputs":[],"name":"MissingOriginalConsiderationItems","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"NativeTokenTransferGenericFailure","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"NoContract","type":"error"},{"inputs":[],"name":"NoReentrantCalls","type":"error"},{"inputs":[],"name":"NoSpecifiedOrdersAvailable","type":"error"},{"inputs":[],"name":"OfferAndConsiderationRequiredOnFulfillment","type":"error"},{"inputs":[],"name":"OfferCriteriaResolverOutOfRange","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"OrderAlreadyFilled","type":"error"},{"inputs":[{"internalType":"enum Side","name":"side","type":"uint8"}],"name":"OrderCriteriaResolverOutOfRange","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"OrderIsCancelled","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"OrderPartiallyFilled","type":"error"},{"inputs":[],"name":"PartialFillsNotEnabledForOrder","type":"error"},{"inputs":[],"name":"TStoreAlreadyActivated","type":"error"},{"inputs":[],"name":"TStoreNotSupported","type":"error"},{"inputs":[],"name":"TloadTestContractDeploymentFailed","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokenTransferGenericFailure","type":"error"},{"inputs":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"considerationIndex","type":"uint256"}],"name":"UnresolvedConsiderationCriteria","type":"error"},{"inputs":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"offerIndex","type":"uint256"}],"name":"UnresolvedOfferCriteria","type":"error"},{"inputs":[],"name":"UnusedItemParameters","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newCounter","type":"uint256"},{"indexed":true,"internalType":"address","name":"offerer","type":"address"}],"name":"CounterIncremented","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"offerer","type":"address"},{"indexed":true,"internalType":"address","name":"zone","type":"address"}],"name":"OrderCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"offerer","type":"address"},{"indexed":true,"internalType":"address","name":"zone","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"indexed":false,"internalType":"struct SpentItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"indexed":false,"internalType":"struct ReceivedItem[]","name":"consideration","type":"tuple[]"}],"name":"OrderFulfilled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"indexed":false,"internalType":"struct OrderParameters","name":"orderParameters","type":"tuple"}],"name":"OrderValidated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32[]","name":"orderHashes","type":"bytes32[]"}],"name":"OrdersMatched","type":"event"},{"inputs":[],"name":"__activateTstore","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"counter","type":"uint256"}],"internalType":"struct OrderComponents[]","name":"orders","type":"tuple[]"}],"name":"cancel","outputs":[{"internalType":"bool","name":"cancelled","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"uint120","name":"numerator","type":"uint120"},{"internalType":"uint120","name":"denominator","type":"uint120"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"internalType":"struct AdvancedOrder","name":"","type":"tuple"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"enum Side","name":"side","type":"uint8"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"bytes32[]","name":"criteriaProof","type":"bytes32[]"}],"internalType":"struct CriteriaResolver[]","name":"","type":"tuple[]"},{"internalType":"bytes32","name":"fulfillerConduitKey","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"}],"name":"fulfillAdvancedOrder","outputs":[{"internalType":"bool","name":"fulfilled","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"uint120","name":"numerator","type":"uint120"},{"internalType":"uint120","name":"denominator","type":"uint120"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"internalType":"struct AdvancedOrder[]","name":"","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"enum Side","name":"side","type":"uint8"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"bytes32[]","name":"criteriaProof","type":"bytes32[]"}],"internalType":"struct CriteriaResolver[]","name":"","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[][]","name":"","type":"tuple[][]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[][]","name":"","type":"tuple[][]"},{"internalType":"bytes32","name":"fulfillerConduitKey","type":"bytes32"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"maximumFulfilled","type":"uint256"}],"name":"fulfillAvailableAdvancedOrders","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"},{"components":[{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ReceivedItem","name":"item","type":"tuple"},{"internalType":"address","name":"offerer","type":"address"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"}],"internalType":"struct Execution[]","name":"","type":"tuple[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Order[]","name":"","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[][]","name":"","type":"tuple[][]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[][]","name":"","type":"tuple[][]"},{"internalType":"bytes32","name":"fulfillerConduitKey","type":"bytes32"},{"internalType":"uint256","name":"maximumFulfilled","type":"uint256"}],"name":"fulfillAvailableOrders","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"},{"components":[{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ReceivedItem","name":"item","type":"tuple"},{"internalType":"address","name":"offerer","type":"address"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"}],"internalType":"struct Execution[]","name":"","type":"tuple[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"considerationToken","type":"address"},{"internalType":"uint256","name":"considerationIdentifier","type":"uint256"},{"internalType":"uint256","name":"considerationAmount","type":"uint256"},{"internalType":"address payable","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"internalType":"address","name":"offerToken","type":"address"},{"internalType":"uint256","name":"offerIdentifier","type":"uint256"},{"internalType":"uint256","name":"offerAmount","type":"uint256"},{"internalType":"enum BasicOrderType","name":"basicOrderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"offererConduitKey","type":"bytes32"},{"internalType":"bytes32","name":"fulfillerConduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalAdditionalRecipients","type":"uint256"},{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct AdditionalRecipient[]","name":"additionalRecipients","type":"tuple[]"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct BasicOrderParameters","name":"","type":"tuple"}],"name":"fulfillBasicOrder","outputs":[{"internalType":"bool","name":"fulfilled","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"considerationToken","type":"address"},{"internalType":"uint256","name":"considerationIdentifier","type":"uint256"},{"internalType":"uint256","name":"considerationAmount","type":"uint256"},{"internalType":"address payable","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"internalType":"address","name":"offerToken","type":"address"},{"internalType":"uint256","name":"offerIdentifier","type":"uint256"},{"internalType":"uint256","name":"offerAmount","type":"uint256"},{"internalType":"enum BasicOrderType","name":"basicOrderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"offererConduitKey","type":"bytes32"},{"internalType":"bytes32","name":"fulfillerConduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalAdditionalRecipients","type":"uint256"},{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct AdditionalRecipient[]","name":"additionalRecipients","type":"tuple[]"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct BasicOrderParameters","name":"","type":"tuple"}],"name":"fulfillBasicOrder_efficient_6GL6yc","outputs":[{"internalType":"bool","name":"fulfilled","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Order","name":"","type":"tuple"},{"internalType":"bytes32","name":"fulfillerConduitKey","type":"bytes32"}],"name":"fulfillOrder","outputs":[{"internalType":"bool","name":"fulfilled","type":"bool"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"contractOfferer","type":"address"}],"name":"getContractOffererNonce","outputs":[{"internalType":"uint256","name":"nonce","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"offerer","type":"address"}],"name":"getCounter","outputs":[{"internalType":"uint256","name":"counter","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"counter","type":"uint256"}],"internalType":"struct OrderComponents","name":"","type":"tuple"}],"name":"getOrderHash","outputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"getOrderStatus","outputs":[{"internalType":"bool","name":"isValidated","type":"bool"},{"internalType":"bool","name":"isCancelled","type":"bool"},{"internalType":"uint256","name":"totalFilled","type":"uint256"},{"internalType":"uint256","name":"totalSize","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incrementCounter","outputs":[{"internalType":"uint256","name":"newCounter","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"information","outputs":[{"internalType":"string","name":"version","type":"string"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"address","name":"conduitController","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"uint120","name":"numerator","type":"uint120"},{"internalType":"uint120","name":"denominator","type":"uint120"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"internalType":"struct AdvancedOrder[]","name":"","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"enum Side","name":"side","type":"uint8"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"bytes32[]","name":"criteriaProof","type":"bytes32[]"}],"internalType":"struct CriteriaResolver[]","name":"","type":"tuple[]"},{"components":[{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[]","name":"offerComponents","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[]","name":"considerationComponents","type":"tuple[]"}],"internalType":"struct Fulfillment[]","name":"","type":"tuple[]"},{"internalType":"address","name":"recipient","type":"address"}],"name":"matchAdvancedOrders","outputs":[{"components":[{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ReceivedItem","name":"item","type":"tuple"},{"internalType":"address","name":"offerer","type":"address"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"}],"internalType":"struct Execution[]","name":"","type":"tuple[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Order[]","name":"","type":"tuple[]"},{"components":[{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[]","name":"offerComponents","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"orderIndex","type":"uint256"},{"internalType":"uint256","name":"itemIndex","type":"uint256"}],"internalType":"struct FulfillmentComponent[]","name":"considerationComponents","type":"tuple[]"}],"internalType":"struct Fulfillment[]","name":"","type":"tuple[]"}],"name":"matchOrders","outputs":[{"components":[{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ReceivedItem","name":"item","type":"tuple"},{"internalType":"address","name":"offerer","type":"address"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"}],"internalType":"struct Execution[]","name":"","type":"tuple[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"offerer","type":"address"},{"internalType":"address","name":"zone","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"}],"internalType":"struct OfferItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifierOrCriteria","type":"uint256"},{"internalType":"uint256","name":"startAmount","type":"uint256"},{"internalType":"uint256","name":"endAmount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ConsiderationItem[]","name":"consideration","type":"tuple[]"},{"internalType":"enum OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"},{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"bytes32","name":"conduitKey","type":"bytes32"},{"internalType":"uint256","name":"totalOriginalConsiderationItems","type":"uint256"}],"internalType":"struct OrderParameters","name":"parameters","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Order[]","name":"","type":"tuple[]"}],"name":"validate","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
61020060405234620000f7576200001f6200001962000171565b620001ae565b604051615dad908162000762823960805181613c90015260a05181613cb4015260c05181613c6d015260e051818181611252015261200f0152610100518181816112a00152611eba01526101205181818161130b015261208401526101405181613c1d01526101605181613c43015261018051818181610f1601528181612495015261429501526101a0518181816124d301526142d301526101c0518181816104cd01528181611de7015281816127170152818161275c015281816130a401528181613101015261315e01526101e051816104ff0152f35b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b604081019081106001600160401b038211176200012b57604052565b620000fb565b60a081019081106001600160401b038211176200012b57604052565b601f909101601f19168101906001600160401b038211908210176200012b57604052565b6200650f602081380391826040519384926200018e82856200014d565b833981010312620000f757516001600160a01b0381168103620000f75790565b620001b86200063c565b610120526101005260e05260c05260a05260805246610140526200020560c0519060805160a051604051935f5281602052604052466060523060805260a05f20926040525f606052608052565b610160526001600160a01b0390811661018081905260408051630a96ad3960e01b815291829060049082905afa908115620002ca575f9162000293575b506101a05262000251620002f2565b908116156200028157620002658162000308565b90816101c0526101e052156200027757565b600163929eee1455565b604051632aea588760e01b8152600490fd5b620002ba915060403d604011620002c2575b620002b181836200014d565b810190620002d0565b505f62000242565b503d620002a5565b620002e7565b9190826040910312620000f7576020825192015190565b6040513d5f823e3d90fd5b696002601e613d5c3d52f35f52600a60165ff090565b5f80808093600a5a04fa3d156200034f573d6001600160401b0381116200012b576040519062000343601f8201601f1916602001836200014d565b81525f60203d92013e90565b90565b6040519060c082016001600160401b038111838210176200012b576040526084825263656e742960e01b60a0837f436f6e73696465726174696f6e4974656d2875696e7438206974656d5479706560208201527f2c6164647265737320746f6b656e2c75696e74323536206964656e746966696560408201527f724f7243726974657269612c75696e74323536207374617274416d6f756e742c60608201527f75696e7432353620656e64416d6f756e742c616464726573732072656369706960808201520152565b6040519061010082016001600160401b038111838210176200012b5760405260d482527f4b65792c75696e7432353620636f756e7465722900000000000000000000000060e0837f4f72646572436f6d706f6e656e74732861646472657373206f6666657265722c60208201527f61646472657373207a6f6e652c4f666665724974656d5b5d206f666665722c4360408201527f6f6e73696465726174696f6e4974656d5b5d20636f6e73696465726174696f6e60608201527f2c75696e7438206f72646572547970652c75696e74323536207374617274546960808201527f6d652c75696e7432353620656e6454696d652c62797465733332207a6f6e654860a08201527f6173682c75696e743235362073616c742c6279746573333220636f6e6475697460c08201520152565b60405190608082016001600160401b038111838210176200012b576040526052825271766572696679696e67436f6e74726163742960701b6060837f454950373132446f6d61696e28737472696e67206e616d652c737472696e672060208201527f76657273696f6e2c75696e7432353620636861696e49642c616464726573732060408201520152565b908151915f5b838110620005ec575050015f815290565b8060208092840101518185015201620005db565b6200062b620006249493620006246200063a946040519788956020870190620005d5565b90620005d5565b03601f1981018452836200014d565b565b6040516200064a816200010f565b60078152600760208092016614d9585c1bdc9d60ca1b8152209160038260405162000675816200010f565b828152016218971b60e91b81522091604051620006928162000131565b606a8152818101927f4f666665724974656d2875696e7438206974656d547970652c6164647265737384527f20746f6b656e2c75696e74323536206964656e7469666965724f72437269746560408301527f7269612c75696e74323536207374617274416d6f756e742c75696e7432353620606083015269656e64416d6f756e742960b01b60808301526200072662000352565b9262000759620007356200041b565b93620007406200054a565b8381519101209681519020958051848201209562000600565b80519101209056fe60806040526004361015610022575b3615610018575f80fd5b610020611de5565b005b5f3560e01c80156100ec57806306fdde031461013757806346423aa7146101325780635b34b9661461012d5780637423eb3c1461012857806379df72bd1461012357806387201b411461011e5780638814773214610119578063a817440414610114578063a900866b1461010f578063b3a34c4c1461010a578063e7acab2414610105578063ed98a57414610100578063f07ec373146100fb578063f2d12b12146100f6578063f47b7740146100f1578063fb0f3ee1146100ec5763fd9f1e100361000e57610f46565b610191565b610ec2565b610ded565b610d89565b610cc6565b610c0a565b610b8b565b610b24565b610a72565b6108e5565b6107d6565b6105b2565b610493565b6103f0565b610372565b61032e565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc9060208282011261018d576004359167ffffffffffffffff831161018d57826102409203011261018d5760040190565b5f80fd5b61019a3661013c565b5061012435600381169060021c60018111913415830361032857600382117f0203020301010000000000000000000000000000000000000000000000000000831a61020f8160a0840260240135877d010102030000000000000000000000000000000000000000000000000000881a87611e80565b9490928060051b6101c4013596610225816106b9565b61027557505060443560243517610268576102509461024391612584565b61024b612649565b6126c5565b610258612715565b60405160018152602090f35b0390f35b636ab37ce75f526004601cfd5b61024b925061025096916102bd9161028b611201565b93848361029882956106b9565b600281036102c257506102b8916101043560e4353360843560c4356122a2565b6123b1565b61245b565b6102cb816106b9565b600381036102eb57506102b8916101043560e4353360843560c4356121af565b806102f76004926106b9565b03610312576102b891606435604435608435336024356122a2565b6102b891606435604435608435336024356121af565b34611e70565b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d57602080526707536561706f727460475260606020f35b3461018d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d576004355f526001602052608060405f20546040519060ff81161515825260ff8160081c16151560208301526effffffffffffffffffffffffffffff8160101c16604083015260881c6060820152f35b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5761042661275a565b335f525f602052602060405f2080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff43014060801c018091556040518181527f721c20121297512b72821b97f5326877ea8ecf4bb9948fea5bfcb6453074d37f833392a2604051908152f35b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5763929eee1460018154147f00000000000000000000000000000000000000000000000000000000000000009081156105a9575b5061057f575f8080807f0000000000000000000000000000000000000000000000000000000000000000600a5a04fa3d1561057a573d61053b610536826111c7565b611148565b9081525f60203d92013e5b15610550575f9055005b60046040517f70a4078f000000000000000000000000000000000000000000000000000000008152fd5b610546565b60046040517ff45b98b0000000000000000000000000000000000000000000000000000000008152fd5b9050155f6104f4565b3461018d577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60208136011261018d576004359067ffffffffffffffff821161018d5761016090823603011261018d5761062663ffffffff6020921661014461061d82600401615c33565b91013590611245565b604051908152f35b9181601f8401121561018d5782359167ffffffffffffffff831161018d576020808501948460051b01011161018d57565b73ffffffffffffffffffffffffffffffffffffffff81160361018d57565b60a4359061068a8261065f565b565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b600611156106c357565b61068c565b60809080516106d6816106b9565b83528160208201519173ffffffffffffffffffffffffffffffffffffffff80931660208601526040810151604086015260608101516060860152015116910152565b9081518082526020808093019301915f5b828110610737575050505090565b909192938260e0600192604088516107508382516106c8565b8085015173ffffffffffffffffffffffffffffffffffffffff1660a0840152015160c082015201950193929101610729565b909291604082019160408152845180935260608101926020809601905f5b8181106107c0575050506107bd9394506020818403910152610718565b90565b82511515865294870194918701916001016107a0565b60e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5767ffffffffffffffff60043581811161018d5761082190369060040161062e565b505060243581811161018d5761083b90369060040161062e565b505060443581811161018d5761085590369060040161062e565b505060643590811161018d5761086f90369060040161062e565b505061088861087c61067d565b60c4359060843561105c565b9061026460405192839283610782565b60207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc82011261018d576004359067ffffffffffffffff821161018d576108e19160040161062e565b9091565b3461018d576108f336610898565b5050600461090b63ffffffff600435166004016115e1565b9061091461275a565b8151905f92361515935b8381106109315760405160018152602090f35b61093b81836116ac565b519081519184608084015161094f816116c0565b610958816116c0565b14610a5757825173ffffffffffffffffffffffffffffffffffffffff169261097f81612dad565b610991815f52600160205260405f2090565b9461099d8a8784612e07565b506109b06109ac875460ff1690565b1590565b6109c4575b50505050600191505b0161091e565b60608301515161014084015103610a5257600195610a0c610a37928460207ff280791efe782edcf06ce15c8f4dff17601db3b88eb3805a0db7d77faf757f0498015191612ec8565b60017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00825416179055565b610a46604051928392836117f1565b0390a15f8080806109b5565b612ebb565b50600191506109be565b9060206107bd928181520190610718565b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5760043567ffffffffffffffff80821161018d57610abc368360040161062e565b505060243590811161018d5761026491610b1091610add368260040161062e565b5050610b08610af563ffffffff8094166004016118e9565b92610afe6111a4565b9216600401611948565b9033926119ce565b604051918291602083526020830190610718565b3461018d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5773ffffffffffffffffffffffffffffffffffffffff600435610b748161065f565b165f526002602052602060405f2054604051908152f35b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60408136011261018d576004359067ffffffffffffffff821161018d57604090823603011261018d57610c00610bec63ffffffff60209316600401611aa3565b610bf46111a4565b90339160243591611bf5565b6040519015158152f35b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60808136011261018d576004359067ffffffffffffffff9081831161018d5760a090833603011261018d5760243590811161018d5761026491610cb491610c75368260040161062e565b5050610ca460643592610c878461065f565b610c9a63ffffffff809216600401611d2f565b9216600401611426565b9133811502019160443591611bf5565b60405190151581529081906020820190565b60a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d57600467ffffffffffffffff813581811161018d57610d103682850161062e565b50506024359082821161018d57610d293683860161062e565b505060443592831161018d57610d7a61088894610d483686830161062e565b5050610d5c63ffffffff80941682016118e9565b92610d7281610d696111a4565b961683016114b5565b9516016114b5565b60843593339360643593611514565b3461018d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d576020610626600435610dc98161065f565b73ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f205490565b60807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5767ffffffffffffffff6004803582811161018d57610e373682840161062e565b50506024359083821161018d57610e503683850161062e565b505060443593841161018d5761026493610eaa610eb694610e733684830161062e565b5050610e99610ea260643595610e888761065f565b63ffffffff928380921685016113c7565b97168301611426565b931601611948565b913381150201926119ce565b60405191829182610a61565b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d57610ef8613c1a565b60605f5260205273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000166040526303312e3660635260a05ff35b3461018d57610f5436610898565b90610f5d61275a565b5f915f5b818110610f7e5783610f795760405160018152602090f35b613cf0565b80610f8c6001928486611d8e565b94610f9686611dce565b907f6bacc01dbe442496068f7d234edd811f1a5f833243e0aec824f86ab861f3c90d610fef610fc760208a01611dce565b92610fd460808b01611dd8565b60048533148733141715911417179861014061061d82615c33565b91611031611005845f52600160205260405f2090565b80547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000016610100179055565b60405192835273ffffffffffffffffffffffffffffffffffffffff908116931691602090a301610f61565b906108e1929163ffffffff9161107883600435166004016113c7565b926110898160243516600401611426565b6110a961109c83604435166004016114b5565b92606435166004016114b5565b92338115020194611514565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6040519060a0820182811067ffffffffffffffff82111761110257604052565b6110b5565b60405190610160820182811067ffffffffffffffff82111761110257604052565b604051906040820182811067ffffffffffffffff82111761110257604052565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f604051930116820182811067ffffffffffffffff82111761110257604052565b67ffffffffffffffff81116111025760051b60200190565b6040516020810181811067ffffffffffffffff821117611102576040525f815290565b67ffffffffffffffff811161110257601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b611209611128565b90602082526020828136910137565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b91909161014081018051917f0000000000000000000000000000000000000000000000000000000000000000604051604083018051928351926020809501905f915b868684106113865750505050506040519160051b8220917f00000000000000000000000000000000000000000000000000000000000000009093606086019481865101905f915b8a83106113445750505050507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08660051b604051209401978851907f00000000000000000000000000000000000000000000000000000000000000008a5282519383528451958552865261018089209852525252565b8380827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0600194510180519089815260e08120875252019201920191906112ce565b80827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0600194510180519088815260c0812087525201920192019190611287565b9081359163ffffffff90641fffffffe08460051b1690604051906020936020848401016040528083971683525f5b84811061140457505050505050565b8061141a87848180958801013516860101611d2f565b828287010152016113f5565b9081359063ffffffff92600593641fffffffe08460051b16906040805191602094858585010183528184981684525f5b8581106114695750505050505050909150565b8083888093850101351683018551908360a091828401895287608093848484018737820135160101908d60018884351601901b8851928184018a52833782015282828801015201611456565b9081359163ffffffff90641fffffffe08460051b1690604051906020936020848401016040528083971683525f5b8481106114f257505050505050565b8061150887848180958801013516860101612879565b828287010152016114e3565b96948093949296611528923615908a6128d4565b93909186519082519261154361153e8585612cee565b612d4b565b98865f5b8b8d8783106115ab5750505050505f5b8481106115735750505050508461156f9495966147a8565b9190565b806115a48b611590868f611589600197896116ac565b5190614665565b61159d88850180936116ac565b528c6116ac565b5001611557565b826115c76001956115cd936115c0848a6116ac565b519061461f565b926116ac565b526115d8818d6116ac565b50018790611547565b9081359163ffffffff641fffffffe08460051b1690604090815190602094858584010184528183981683525f5b85811061161e5750505050505050565b80838880938501013516830161165d838851928984016101a085018b5261164e81848b8186013516850101613046565b8452878a820135160101613078565b838201528282870101520161160e565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b8051156116a75760200190565b61166d565b80518210156116a75760209160051b010190565b600511156106c357565b5160058110156106c35790565b9081518082526020808093019301915f5b8281106116f6575050505090565b909192938260a06001928751805161170d816106b9565b82528084015173ffffffffffffffffffffffffffffffffffffffff1684830152604080820151908301526060808201519083015260809081015190820152019501939291016116e8565b9081518082526020808093019301915f5b828110611776575050505090565b909192938260c06001928751805161178d816106b9565b82528084015173ffffffffffffffffffffffffffffffffffffffff9081168584015260408083015190840152606080830151908401526080808301519084015260a091820151169082015201950193929101611768565b9060058210156106c35752565b9081526040602082015261181e60408201835173ffffffffffffffffffffffffffffffffffffffff169052565b602082015173ffffffffffffffffffffffffffffffffffffffff1660608201526101806040830151611895611861610160928360808701526101a08601906116d7565b60608601517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08683030160a0870152611757565b936118a8608082015160c08601906117e4565b60a081015160e085015260c081015191610100928386015260e082015192610120938487015282015192610140938487015282015190850152015191015290565b9081359163ffffffff90641fffffffe08460051b1690604051906020936020848401016040528083971683525f5b84811061192657505050505050565b8061193c87848180958801013516860101611aa3565b82828701015201611917565b9081359163ffffffff641fffffffe08460051b1690604090815190602094858584010184528183981683525f5b8581106119855750505050505050565b8083888093850101351683016119be838851928984018a526119af82898184013516830101612879565b8452878a820135160101612879565b8382015282828701015201611975565b939290816119e39186519036151590886128d4565b9190805160051b6040017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe082018051907f4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e76020936020835282a152845190611a4a82612d4b565b955f5b838110611a68575050505083611a649495966147a8565b5090565b80611a87818c611a7a600195876116ac565b5187815191015191614bed565b611a91828b6116ac565b52611a9c818a6116ac565b5001611a4d565b906040516102008101604052611ae9819360a08301808452611acf63ffffffff91828435168401613046565b600160208501526001604085015260208201351601613078565b6060820152608060405191602083016040525f83520152565b611b0a611128565b9060018252815f5b60209081811015611b9557602091611b286110e2565b90611b31611107565b5f81525f828201526060905f60408381840152838084015260809282848201528260a08201528260c08201528260e0820152826101008201528261012082015282610140820152865281858701528501528180850152830152828501015201611b12565b505050565b611ba2611128565b600181529060203681840137565b90611bbd6105368361118c565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0611beb829461118c565b0190602036910137565b909192611cfd93825192608084015191611c0e836116c0565b611c17836116c0565b60048314611c248161315c565b36151590611c5d611c3583866131d2565b93919290929a611c43611b02565b88611c4d8261169a565b52611c578161169a565b506133d1565b611c698884848c61353b565b611c7a611c74611b9a565b976116c0565b611d0a578593611ca08694611ca8948a94611c9a8e611cb89c819c6136db565b8961383b565b505b88613944565b82611cb28361169a565b52613a36565b815173ffffffffffffffffffffffffffffffffffffffff165b602083015173ffffffffffffffffffffffffffffffffffffffff16906060604085015194015194613b3b565b611d05612715565b600190565b505084965091611ca8611d27611cb895939460808401518961361c565b978894611ca2565b9060405161020081016040526080611d898294604060208201602086013760a08401808552611d6863ffffffff91828435168401613046565b611d79816060840135168301613078565b6060860152838201351601613078565b910152565b91908110156116a75760051b810135907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffea18136030182121561018d570190565b356107bd8161065f565b35600581101561018d5790565b7f000000000000000000000000000000000000000000000000000000000000000080611e51575b15611e1357565b63929eee14805480159182611e42575b5060031415901516611e3157565b63a61be9f05f52346020526024601cfd5b6002905c03611e31575f611e23565b600263929eee145c0315611e0c5763a61be9f05f52346020526024601cfd5b63a61be9f05f526020526024601cfd5b93929190611e8c6130a2565b611e94613cfd565b6101643561014435428211154282111761219c57505061020435610264351061218f57927f00000000000000000000000000000000000000000000000000000000000000006080528360a0526060602460c037604060646101203760e0608090812061016052600161026435016102043560051b6102a08101919091526102c081019586526024906102e00137610160938260a0528360c0525f60e0525f915f5b8261020435821015611f925790604060019261010060a060208560061b99818b610284018537858b61028401610120376102a48b0135179c019760e0608020895201978989528a60c0840152610284019101370195929195611f35565b509550969590916001610204350160051b610160206060525b8261026435871015611fea5790604060a060019301948686528760c08201526101008960061b610284019101376102a48760061b013517950194611fab565b5092509593505073ffffffffffffffffffffffffffffffffffffffff915011612182577f00000000000000000000000000000000000000000000000000000000000000006080528060a052606060c460c03760206101046101203760c06080205f5260205f2060e0526103c0608435916120818373ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b547f00000000000000000000000000000000000000000000000000000000000000006080526040608460a03760605161010052856101205260a0610144610140376101e090815261018060808181206102043560051b928301818152336101a08501526101c084019290925261012083850152600161020084015261022083019490945292949060609060c49061024001377f9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f3160a06102643502938460a435940190a35f6060526102043560051b010160405261156f61216a61216383613d53565b9483613d9e565b93710100000000000000000000000000000100019055565b6339f3e3fd5f526004601cfd5b63466aa6165f526004601cfd5b6321ccfeb75f526020526040526044601cfd5b9590919293946121be86613e6f565b6121c88183613e83565b806121d857505061068a94613f63565b90606495969493929160208251145f1461228f5760c0906001906040845260208401527f4ce34aa2000000000000000000000000000000000000000000000000000000006040840152602060448401526001888401525b02019360037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc48601527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe48501526004840152602483015260448201520152565b5060c0868201600181510180915261222f565b919396959092946122b38183613e83565b806122d3575050600186036122cd5761068a949550614071565b85614061565b81519697966064969395939492919060200361238c5760c0906001906040845260208401527f4ce34aa2000000000000000000000000000000000000000000000000000000006040840152602060448401526001888401525b02019360027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc48601527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe48501526004840152602483015260448201520152565b5060c0868201600181510180915261232c565b919082039182116123ac57565b611218565b919082156124485760843592610104353360c43560e4355b612443578360051b6101e40335936102643560061b905f5b8281106123f6575050509561068a9596614133565b87876102848301358c85612422575b9184939161241c936102a46040970135908a614133565b016123e1565b989181612436604096959361241c9561239f565b9a91935091939450612405565b610268565b33926064356084356024356044356123c9565b604081510361258157602081015160c06064830151026044019060205f73ffffffffffffffffffffffffffffffffffffffff9360405194807f00000000000000000000000000000000000000000000000000000000000000001674ff00000000000000000000000000000000000000001783528484527f00000000000000000000000000000000000000000000000000000000000000006040526055600b2016946040528180526040860182865af15f519015612568577fffffffff000000000000000000000000000000000000000000000000000000007f4ce34aa20000000000000000000000000000000000000000000000000000000091160361256357505060209052565b61543d565b82612571614f3d565b63d13d53d45f526020526024601cfd5b50565b60c43592916101043560e43560843583156126005761068a95966125a784613e6f565b604051957f4ce34aa200000000000000000000000000000000000000000000000000000000875260206004880152600160248801526044870152606486015260848501523360a485015260c484015260e4830152614272565b9195925092806126116002926106b9565b03612631576001850361262b5761068a9394503391614071565b84614061565b9084929161264261068a9596613e6f565b3391613f63565b346064355f6102643560061b5b80821061268d575050818111612688576126728160843561435b565b80821161267d575050565b61068a91033361435b565b6126b8565b9092836102840135938185116126b8576126b18560409303956102a483013561435b565b0190612656565b638ffff9805f526004601cfd5b919060a435908133141590600460018211911016166126e357505050565b61270f92601c83516317b1f9428552600163ffffffff82165263fb5014fc60605260801c930191614390565b5f606052565b7f00000000000000000000000000000000000000000000000000000000000000006127515763929eee1480541561274c5760019055565b5f905d565b5f63929eee145d565b7f0000000000000000000000000000000000000000000000000000000000000000806127b9575b1561278857565b63929eee1480549081156127ae575b506001106127a157565b637fa8a9875f526004601cfd5b5c6127a1575f612797565b63929eee145c1561278157637fa8a9875f526004601cfd5b90813563ffffffff811692604051938085526020641fffffffe0819460051b16860101928392602060a080940291018537602086015b8381106128175750505050604052565b848152938201938101612807565b90813563ffffffff811692604051938085526020641fffffffe0819460051b16860101928392602060c080940291018537602086015b83811061286b5750505050604052565b84815293820193810161285b565b908135916040926040519363ffffffff82168552602080641fffffffe08460051b16870101936020643fffffffc0869560061b1691018537602086015b8381106128c65750505050604052565b8481529382019381016128b6565b939492915f946128e26130ff565b5f357c4000000000000000000000000000000000000000000000000000000000169681519361291085611bb0565b9860205b6001870160051b8110612b5757507c400000000000000000000000000000000000000000000000000000000114612b5257612954908392969594936133d1565b5f946020945b6001850160051b8610612979575050505050501561297457565b614612565b909192939495868a01918251918215612b435788860151938215612ad057878d8b608060046129aa828b51016116ca565b6129b3816116c0565b14612ae75750916109ac91877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6129ef9560051c01918a61447b565b612ad0576020850190612a556109ac612a1784516effffffffffffffffffffffffffffff1690565b60408901516effffffffffffffffffffffffffffff1690612a398d8b516145dc565b916effffffffffffffffffffffffffffff80911691168961383b565b612ab957505050907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff612aa5925b01925184611cd1825173ffffffffffffffffffffffffffffffffffffffff1690565b6001602081975b019594939291905061295a565b602093955060019450905f80929b939b5252612aac565b6001935060208093955f80939c949c520152612aac565b915050612afc9295508651908701519061361c565b8093528215612b315750907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff612aa592612a83565b97600192505f60208093950152612aac565b97602091935060019250612aac565b61446e565b8a81860151612b6688826131d2565b6effffffffffffffffffffffffffffff821660208501529093909291908415612ce1576effffffffffffffffffffffffffffff84166040840152850152805160a08101519160c082015191608001519e8f612bc0816116c0565b600110179e815160400151908151905f925b828410612c6b5750505050606090510151938451945f5b868110612c0157505050505050506020905b01612914565b80612c0e600192846116ac565b516080810160a0612c2182518b896143f9565b92612c4a60608201948c8651865181145f14612c5a5750508086525b8a8c36151592885161442b565b8094520190815190525201612be9565b612c64918c6143f9565b8652612c3d565b90919299612c798b836116ac565b519060048410825110179a608082018051612c95908b8d6143f9565b92606001908a8251948d835187145f1496612cc493600198612cd1575050508084525b8a8c361592865161442b565b8092525201929190612bd2565b612cda926143f9565b8452612cb8565b5050505050602090612bfb565b919082018092116123ac57565b604051906060820182811067ffffffffffffffff821117611102576040525f604083612d256110e2565b838152836020820152838382015283606082015283608082015281528260208201520152565b90612d586105368361118c565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0612d86829461118c565b01905f5b828110612d9657505050565b602090612da1612cfb565b82828501015201612d8a565b6060810151516101408201511161218f5780612e0173ffffffffffffffffffffffffffffffffffffffff6107bd93511673ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f205490565b90611245565b91905460ff8160081c16612e63576effffffffffffffffffffffffffffff8160101c169081612e3a575b50505050600190565b60881c1115612e4a578080612e31565b612e5357505f90565b6310fda3e15f526020526024601cfd5b50612e6d57505f90565b631a5155745f526020526024601cfd5b91905460ff8160081c16612e63576effffffffffffffffffffffffffffff915060101c16612eab5750600190565b63ee9e0e635f526020526024601cfd5b632165628a5f526004601cfd5b92919033841461304057612eda613c1a565b93612f1482867f19010000000000000000000000000000000000000000000000000000000000005f5260025260225260425f20905f602252565b908351926002601f601d860116106102e27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9d860110165f146130325760018085169081604103927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbf60059388010160051c93808952880160209384820151928560238560e81c94019460e31c169081528584519118526001925b8684106130135750505050509661300d9161068a9798612fd160405f209261570a565b5f525260405f20907f19010000000000000000000000000000000000000000000000000000000000005f5260025260225260425f20905f602252565b90614a07565b85859101938684821c841b1660405f2081528786519118520192612fae565b5061068a9495508190614a07565b50509050565b611d8960609161016081853763ffffffff6130688160408401351683016127d1565b6040860152838201351601612825565b9060206040519263ffffffff813563ffffffe0601f82011692848401908737168452830101604052565b7f00000000000000000000000000000000000000000000000000000000000000006130ee5763929eee14805480156130e1576001036127a15760029055565b50805c6127a1576001905d565b63929eee14805c6127a1576001905d565b7f000000000000000000000000000000000000000000000000000000000000000061314b5763929eee148054801561313e576001036127a15760039055565b50805c6127a1576002905d565b63929eee14805c6127a1576002905d565b7f00000000000000000000000000000000000000000000000000000000000000006131ab5763929eee14908154801561319d576001036127a1576002019055565b50815c6127a157600101905d565b63929eee1490815c6127a157600101905d565b90805b6131c9575090565b809106806131c1565b9190918051916131ef6109ac8560a086015160c087015190614d1d565b6133bc576effffffffffffffffffffffffffffff6020816020850151169482604086015116946080820160048151613226816116c0565b61322f816116c0565b146133a35787158789111761339e575191613249836116c0565b600180931615878910166133995761326081612dad565b986132816109ac6132798c5f52600160205260405f2090565b92838d612e07565b61338b5754918960ff841615613357575b5050508060881c918483159260101c1691156132b0575b5050505050565b86979614613343578187146133265786829102950295029385019484861185870302809103958386116132e4575b806132a9565b856132fe926132f8929894959798036131be565b826131be565b8015018091049404928311613315578080806132de565b601190634e487b715f52526024601cfd5b925050508291939201828082119103029003915f808080806132a9565b8103955093505f91508190508080806132a9565b606061337a613383945173ffffffffffffffffffffffffffffffffffffffff1690565b92015191612ec8565b5f8089613292565b505f97508796505050505050565b614d4b565b614d3e565b50505050509250600191021861339e5760019081908290565b5f9350839250829150565b600211156106c357565b81518151925f5b82811061346f575050505f5b8281106133f057505050565b806133fd600192846116ac565b5161343161341d60208301516effffffffffffffffffffffffffffff1690565b6effffffffffffffffffffffffffffff1690565b15613469576134639051604060808201519161344c836116c0565b61345b83606083015187614e36565b015183615d44565b016133e4565b50613463565b61347981836116ac565b518051868110156135285761348e90866116ac565b516020906134b061341d838301516effffffffffffffffffffffffffffff1690565b1561351d57519060409081830151918401519263bfb3f8ce918501516134d5816133c7565b6134de816133c7565b61350a575b5081518310156135025750916134fc9160019493614d74565b016133d8565b5f526004601cfd5b9050606091500151636088d7de5f6134e3565b5050506001906134fc565b6020820151613536816133c7565b614d58565b60a08082015160c0830151604084018051513615985f989597959492895b8381106135d7575050505060809660046080870151613577816116c0565b1016612b52576060948501805151981593905f5b8a811061359f575050505050505050505050565b808a8a8a8a6135cb8b8b8b8b6135b860019b8d516116ac565b51968701958651998801998a5190614e92565b9052015190520161358b565b82888d838551906135e7916116ac565b519d8e516135f4816106b9565b15179d60608101918a8a8d85519460800196875161361196614e92565b905252600101613559565b919091606081019182515161014083015103612ebb575f8061365c613655855173ffffffffffffffffffffffffffffffffffffffff1690565b9685614ed1565b9082885af19361368a8173ffffffffffffffffffffffffffffffffffffffff165f52600260205260405f2090565b9081549160018301905560601b1893156136c25750604001906136b08251825190615c7f565b9390916136bc57525290565b84614f86565b9150506136ce57505f90565b6136d6614f3d565b614f86565b91825190608082015160058110156106c357602083019261372073ffffffffffffffffffffffffffffffffffffffff9283865116331415906004600182119110161690565b61372d575b505050505050565b61381a601c91608061382c980151965f6040519889936301e4d72a85526020808601528860408601523360608601528051608086015260a081015161012086015261014060c08201518187015260e08201516101608701528060a08701526138016040830151936137d76137a761018096878b0190615b45565b80850160c08b01526137c2606087015188838d010190615bb9565b019184830160e08b015286838b010190615ba0565b0193610100928501838901528085890101946137f38689615c03565b016101648101980101604052565b828660401b8d60801b1717910152525160051b9061239f565b9463fb5014fc60605201925116614390565b5f6060525f8080808080613725565b61384d815f52600160205260405f2090565b935f938554948560881c90811561393a57506effffffffffffffffffffffffffffff809660101c1681831461392b578282910292029402019383851190808511818711176138f3575b505b6138b057505060881b9060101b176001179055600190565b92509250505f146138ee576040517f10fda3e10000000000000000000000000000000000000000000000000000000081526004810191909152602490fd5b505f90565b93946138ff86826131be565b80150180910495049380851190861117613919575f613896565b634e487b715f5260116020526024601cfd5b92955050920192828411613898565b9550509293613898565b92919092613950611201565b916040820190815151915f5b8381106139ed5750505050606080910190815151915f5b83811061399c575050505061398991925061245b565b47806139925750565b61068a903361435b565b6139a78183516116ac565b5190858883516139b6816106b9565b6139bf816106b9565b156139da575b906139d491600194339061516a565b01613973565b50504784830151116126885785886139c5565b80613a30876139ff60019486516116ac565b51866080820152613a24895173ffffffffffffffffffffffffffffffffffffffff1690565b6101208a01519161516a565b0161395c565b919091805192608084019182519260058410156106c357613a846020870194613a73865173ffffffffffffffffffffffffffffffffffffffff1690565b331415906004600182119110161690565b15613aaf575050613a9d9061010061270f950151615416565b9290915163fb5014fc5b606052614390565b60049195935051613abf816116c0565b613ac8816116c0565b03613af55761270f93613ae89183519360808560601b9301519086615392565b9290916393979285613aa7565b50505050565b9081518082526020808093019301915f5b828110613b1a575050505090565b909192938260a082613b2f60019489516106c8565b01950193929101613b0c565b9094939173ffffffffffffffffffffffffffffffffffffffff91604090604051956080926080880192885285602092166020890152608060408901528651809352602060a089019701935f915b848310613bd6575050505050508282859493613bd193867f9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31989603606087015216971695613afb565b0390a3565b90919293949784836001928b518051613bee816106b9565b8252808401518c1684830152858101518683015260609081015190820152019901959493019190613b88565b467f000000000000000000000000000000000000000000000000000000000000000003613c65577f000000000000000000000000000000000000000000000000000000000000000090565b6040516080517f00000000000000000000000000000000000000000000000000000000000000005f527f00000000000000000000000000000000000000000000000000000000000000006020527f0000000000000000000000000000000000000000000000000000000000000000604052466060523060805260a05f20916040525f60605260805290565b63fed398fc5f526004601cfd5b7401000000000000000000000000000000000000000060243560c4351760a43560843517171060186101243510166102643560061b61026001610244351461024061022435146020600435141616161561218257565b90815f52600160205260405f2091613d6e3615158483612e7d565b5060ff83541615613d7c5750565b61068a90613d95602463ffffffff610244351601613078565b90608435612ec8565b91905f9260a43591823314159060046001821191101616613dbd575050565b9092506102043560051b90613e5d82608001926301e4d72a8452602060a08201528260c08201523360e082015260843561010082015260606101446101a08301376101e06101408061012084015282015260a06102643502956102a08701610160830152868201935f6103608601526102c08801610180840152806103a06103808701965f8852015263fb5014fc606052609c6103048901930191614390565b5f60605261032482940160801b179052565b15613e7657565b6391b3e5145f526004601cfd5b90602082015103613e915750565b61068a9061245b565b9060649492939160208251145f14613f505760c0906001906040845260208401527f4ce34aa2000000000000000000000000000000000000000000000000000000006040840152602060448401526001878401525b02019260017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc48501527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe4840152600483015260248201525f60448201520152565b5060c08582016001815101809152613eef565b9293919091833b1561405057604051946080519260a0519460c051967ff242432a000000000000000000000000000000000000000000000000000000005f528160045282602452836044528460645260a06084525f60a4525f8060c48180855af115613fe057505050505060805260a05260c0526040525f606052565b883d614004575b5063f486bc875f5260205260405260605260805260a05260a4601cfd5b601f3d0160051c9060051c908060030291808211614037575b505060205a91011061402f5785613fe7565b3d5f803e3d5ffd5b8080600392028380020360091c9203020101868061401d565b83635f15d6725f526020526024601cfd5b6369f958275f526020526024601cfd5b929190833b1561405057604051937f23b872dd000000000000000000000000000000000000000000000000000000005f528160045282602452836044525f8060648180855af1156140c957505050506040525f606052565b843d6140ef575b5063f486bc875f52602052604052606052608052600160a05260a4601cfd5b601f3d0160051c9060051c90806003029180821161411a575b505060205a91011061402f57846140d0565b8080600392028380020360091c92030201018580614108565b9394909461414084613e6f565b61414a8183613e83565b80614264575050604051937f23b872dd000000000000000000000000000000000000000000000000000000005f5280600452816024528260445260205f60648180885af1803d15601f3d1160015f51141617163d15158116156141b7575b5050505050506040525f606052565b80863b1515166141a857908691156141da5785635f15d6725f526020526024601cfd5b908591156141fc575063988919235f526020526040526060526080526084601cfd5b3d614220575b5063f486bc875f526020526040526060525f60805260a05260a4601cfd5b601f3d0160051c9060051c90806003029180821161424b575b505060205a91011061402f5784614202565b8080600392028380020360091c92030201018580614239565b9061068a9592939491613e9a565b60205f61010473ffffffffffffffffffffffffffffffffffffffff9460405195807f00000000000000000000000000000000000000000000000000000000000000001674ff00000000000000000000000000000000000000001784528585527f00000000000000000000000000000000000000000000000000000000000000006040526055600b20169560405282805282865af15f519015612568577fffffffff000000000000000000000000000000000000000000000000000000007f4ce34aa200000000000000000000000000000000000000000000000000000000911603612563575050565b61436482613e6f565b5f80808085855af115614375575050565b61437d614f3d565b63bc806b965f526020526040526044601cfd5b91602091935f91827fffffffff00000000000000000000000000000000000000000000000000000000825116958180525af1905f511490156143dd57156143d45750565b6080526024607cfd5b506143d4614f3d565b818102929181159184041417156123ac57565b919091828114614425578281830961441857614414916143e6565b0490565b63c63cf0895f526004601cfd5b50905090565b9392909384810361443d575050505090565b61445383614459930393420391828503906143e6565b946143e6565b83018093116123ac5781830304019015150290565b6312d3f5a35f526004601cfd5b9193929382519460808601519060058210156106c35760208701936144c473ffffffffffffffffffffffffffffffffffffffff9384875116331415906004600182119110161690565b6144d5575050505050505050600190565b6107bd976145c9836145d293601c956145b5608060409c0151958a8d519d8e6301e4d72a815260208082015201528c6060339101528c608082519101528c61012060a083015191015260a08d61014091829160c08501518382015260e085015161016082015201528d6040830151986145876145576101809b8c850190615b45565b80850160c085015261457260608701518d8387010190615bb9565b019184830160e08501528b8385010190615ba0565b01906101009282018382015289828201019485926145a5848a615c03565b019a6101648c019b830101604052565b8960401b9060801b1717910152525161239f565b60051b9061239f565b9401925116615450565b60808101519060058210156106c35773ffffffffffffffffffffffffffffffffffffffff60206001920151163314159111161790565b63d5da9a1b5f526004601cfd5b92919261462a612cfb565b938251156146545761068a9273ffffffffffffffffffffffffffffffffffffffff869216926155d1565b63375c24c15f525f6020526024601cfd5b92919092614671612cfb565b93805115614796575f92915f925f928091815160059060051b83015b8085106146be575050505050505080916060855101526146aa5750565b600103613919576391b3e5145f526004601cfd5b6020809501948551518751811015614739578190841b88010151908087510151916060928284835101519201511582518210151761478a575f918391871b0101519283019a8c8c518091019d8e9115911060011b17179b9a528c518d8a1560011461473e5750505060a090208718614739575b97969761468d565b6154c1565b83929a5090869160a0945182528b8401518c8301526040918285015183820152608080860151910152338c820152015220968401858118614780575b50614731565b855190525f61477a565b50505050979697614731565b63375c24c15f5260016020526024601cfd5b939190938051926147b884611bb0565b956147c1611201565b90600196600182510160051b6020928360205b8381106149a357505050505f5b878110614871575050506147f49061245b565b4780614861575b5061480d575b505050506107bd612715565b5f5b83811061481c5750614801565b8061483161482b8793896116ac565b51151590565b61483c575b0161480f565b61485c61484982856116ac565b518561485584826116ac565b5191613a36565b614836565b61486b903361435b565b5f6147fb565b61487b81876116ac565b518961489b61341d868401516effffffffffffffffffffffffffffff1690565b1561498f5791906148b56148af838e6116ac565b60019052565b5160408101518051905f5b82811061491f57505050606080910151908151915f5b8381106148e857505050505b016147e1565b9091929394506148f881836116ac565b5183810190815180614918575060a0015190528c949392919085016148d6565b83886156f4565b61492e818394959697936116ac565b5160806060820191825161494d575b0151905201908c949392916148c0565b608081018051908b90526149868d6149798b5173ffffffffffffffffffffffffffffffffffffffff1690565b6101208c0151908561516a565b8282015261493d565b9190505f61499d828d6116ac565b526148e2565b8083015180516060810151806149bf575b5050500184906147d4565b909193504710815115166126b857876149ff918460406149f68b8098015173ffffffffffffffffffffffffffffffffffffffff1690565b9101519161516a565b5f80806149b4565b909291925f80528451947fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101805190876041035f9060018111958615614b84575b5050851485151516978815614a7d575b505050505050505015614a6857565b614a70614f3d565b634f7fb80d5f526004601cfd5b909192939495809798508452604082527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbc8401938451957fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc082019760205f60648b519c7f1626ba7e000000000000000000000000000000000000000000000000000000009e8f8c528d520189845afa9a8b614b28575b50505050505252525f80808080808080614a59565b5f5103614b355780614b13565b3b614a7057614b775760600190604164010100000083515f1a1a15911416614b645763815e1d645f526004601cfd5b631f003d0a5f52515f1a6020526024601cfd5b638baa579f5f526004601cfd5b909150604085019081519260608701515f1a90614bbb575b8652835260205f60808560015afa50838352898552525f515f80614a49565b50601b8360ff1c017f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84168352614b9c565b9192614bf7612cfb565b9380511583511517614d1057614c0b612cfb565b92614c178483876154ce565b8351926060840194855115614d055750614c53614c4b608086015173ffffffffffffffffffffffffffffffffffffffff1690565b8884896155d1565b865193604081015160408601511890602081015160208701511890518651181717614cf55750606084519301928351105f14614cc257509160206060614caf614cbc94614ca0839761169a565b519451905185519103976116ac565b51510151910151906116ac565b51015290565b60609150614cd5614cec9195939561169a565b5160206040614caf885188519003968451906116ac565b51015251905290565b63bced929d5f526020526024601cfd5b965050505050505090565b6398e9db6e5f526004601cfd5b428082111590831116939280614d36575b61219c575050565b508315614d2e565b635a052b325f526004601cfd5b63a11b63ff5f526004601cfd5b63133c37c65f526020526024601cfd5b614d71826106b9565b52565b90614d7e916116ac565b51805191614d8b836106b9565b6003831115614e29576040820180519093908015614dec57927ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe614de692614ddf6060968787015190608088015191615af3565b0190614d68565b01519052565b50608082015151614e24576060927ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe614de692614ddf565b615ae6565b6394eb6af65f526004601cfd5b815192915f5b848110614e4a575050505050565b614e5481836116ac565b518051614e60816106b9565b60036040809301511515600488141517911116614e805750600101614e3c565b8363a8930e9a5f52602052526044601cfd5b959192939490948587145f14614eaf575050506107bd93506143f9565b92919484614ec56107bd98614ecb9497866143f9565b936143f9565b9061442b565b9190608490614f38604051916398919765835260a0601c84019633602086015260806040860152614f246060614f0e604084015185890190615b45565b9283608001828901520151838388010190615b45565b018094608082016080820152010190615ba0565b010190565b3d614f4457565b601f3d0160051c60405160051c908060030291808211614f6d575b505060205a91011061402f57565b8080600392028380020360091c92030201015f80614f5f565b63939792855f526020526024601cfd5b92909260405193815190602092602060c087028801016040528587526020918660010160051b93848901928160010160051b019781810382821002820160010160051b9111975b81851061501a5750505b838310614ff5575050505050565b60a0859183858b01526080908181863e60608501518286015201920192019190614fe7565b9390949197869084838c0152608090818b873e60608087015190818489015288015111615047878961510a565b171799019360a08091019501910194909493929194614fdd565b9290604051938051908185119482808203911002820191602092602060e0820289010160405280885260209060010160051b928389019260010160051b01915b8382106150b057505050505050565b9091929380959782848b015260a090818a853e606083818c018487013e8481015190870151608080870151908901518015911417159111176150f2858861510a565b1717980195949360c0908101939190910191016150a1565b9081519160408101518015600385111661513a575b60208091604085015114948451149301519101511416161590565b5060408201517ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe9093019261511f565b9290918351615178816106b9565b615181816106b9565b615216575050506151c56151ac602083015173ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff60408301519116176124435780606061520d608061068a94015173ffffffffffffffffffffffffffffffffffffffff1690565b9101519061435b565b90919260018151615226816106b9565b61522f816106b9565b036152a65760408101516124435761068a93615262602083015173ffffffffffffffffffffffffffffffffffffffff1690565b9073ffffffffffffffffffffffffffffffffffffffff606061529b608086015173ffffffffffffffffffffffffffffffffffffffff1690565b940151931691614133565b92600284516152b4816106b9565b6152bd816106b9565b0361532a57836152e7602061068a96015173ffffffffffffffffffffffffffffffffffffffff1690565b608082015173ffffffffffffffffffffffffffffffffffffffff169273ffffffffffffffffffffffffffffffffffffffff606060408501519401519416916122a2565b8361534f602061068a96015173ffffffffffffffffffffffffffffffffffffffff1690565b608082015173ffffffffffffffffffffffffffffffffffffffff169273ffffffffffffffffffffffffffffffffffffffff606060408501519401519416916121af565b9493919260c060a494615402614f38946040519663f4dd92ce8852601c88019a1860a088015260a060208801526153ec60606153d56040840151878b0190615b45565b928360a00160408b0152015185838a010190615bb9565b019160a083016060880152838388010190615ba0565b01809460a082016080820152010190615c03565b916125818360801c9263ffffffff601c818760401c16956317b1f942815201951690615c03565b631cf99b265f526020526040526044601cfd5b925f906020929593827fffffffff00000000000000000000000000000000000000000000000000000000825116968180525af1915f511491156154a95750156154995750600190565b63fb5014fc5f526020526024601cfd5b9050919091156154bc5750615499614f3d565b5f9150565b637fda72795f526004601cfd5b909291925f905f925f9180805160059060051b82015b8084106155005750505050505060608293945101526146aa5750565b6020979697809401938451518651811015614739578190841b8701015190808651015191606092828483510151920151158251821015176155c5575f918391871b010151928301998a519b8c81019c15908d1060011b17179a99528b518c89156001146155795750505060a090208618614739576154e4565b829950905f8493819360a0965184528186015182850152604093848701518582015260808088015191015201528d0152209583018481186155bb575b506154e4565b845190525f6155b5565b505050509695966154e4565b81519294935f93849384929091825b8160051b840181106156015750505050505060608293945101526146aa5750565b6020909796970190855182515110156147395781516020815160051b880101516020815192015160206040840151920151158251821015176156e9579060209160051b0101515f60608201998a519081158d8381011060011b17179b0199528b51871560011461569557506060902086189060408c0151610120820151189060208d01519051181717614739575b906155e0565b9160609397506040826101209351855260208101516020860152015160408401528560808401528c60208251910152015160408c01522093602084018281186156df575b5061568f565b825190525f6156d9565b50505096959661568f565b63a5f542085f526020526040526060526064601cfd5b600981106159a2576011811061585e57601581106157c057601781106157755760177f403be09941a31d05cfc2f896505811353d45d38743288b016630cce39435476a9114027f1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c1890565b60157fbb40bf8cea3a5a716e2b6eb08bbdac8ec159f82f380783db3c56904f15a43d049114027f3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d1890565b601381106158135760137f54b3212a178782f104e0d514b41a9a5c4ca9c980bf6597c3cecbf280917e202a9114027f5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e643500171890565b60117f2d7a3ed6dab270fdb8e054b2ad525f0ce2a8b89cc76c17f0965434740f673a559114027fc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d858771890565b600d811061590457600f81106158b957600f7fcc4886e37eedd9aacd6c1c2c9247197a621a71282e87a7cbc673f3736d9aa1419114027f1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde81890565b600d7f8df51df98847160517f5b1186b4bc3f418d98b8a7f17f1292f392d79d600d79e9114027f6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a8525901890565b600b811061595757600b7f32f4e7485d6485f9f6c255929b9905c62ba919758bbe231f231eaeecf33d810c9114027fbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f1890565b60097f6f0ec38c21f6f583ab7f3c5413c773ffd5344c34fde1d390958e438bf667448f9114027fd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da051890565b60058110615a4857600781106159fd5760077fb58d772fb09b426b9dece637f61ca9065f2b994f1464b51e9207f55f7c8f59489114027f7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc141890565b60057f25d02425402d882d211a7ab774c0ed6eca048c4d03d9af40132475744753b2a39114027f1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b551890565b60038110615a9b5760037ff3e8417a785f980bdaf134fa0274a6bf891eeb8195cd94b09d2aa651046e28bc9114027fa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af11890565b60017f832c58a5b611aadcfa6a082ac9d04bace53d8278387f10040347b7e98eb5b3029114027fbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde301890565b6309bde3395f526004601cfd5b9190915f5260209060205f20916020820191602081519160059260051b0101905b818410615b26575050505003615ae657565b8351808611821b9586529483189490945260405f209392820192615b14565b9081519081815260209283808083019301918460051b0101915b84838210615b72575050505060071b0190565b8160809251805185528281015183860152604080820151908601526060809101519085015201910190615b5f565b8051603f0163ffffffe016929161068a91849190615c23565b80519182815260208080808501948660051b01019201925b828110615be5575050505060a00260200190565b60a090818581835160045afa153d151761018d578201930192615bd1565b615c1f602092839283815180845260051b948593019101615c23565b0190565b829060045afa153d151761018d57565b604051906101608201604052615c71610140918281853763ffffffff615c608160408401351683016127d1565b604086015260608201351601612825565b806060840152519082015290565b90915f925f9260603d10915f905f925f905f938615615cdc575b8615615cab575b505050505050929190565b615cc4939495995060209850615cce9650880190614f96565b9590960190615061565b9092175f8080808080615ca0565b509450925060405f803e5f51926020948551943d878201113d8888011117968715615d08575b50615c99565b9450809650849192505f3e5f51908385813e835193808560a0028701013d10908360071b8801013d101761ffff8584171117955f80525f615d02565b815192915f5b848110615d58575050505050565b615d6281836116ac565b518051615d6e816106b9565b60036040809301511515600488141517911116615d8e5750600101615d4a565b8363d69293325f52602052526044601cfdfea164736f6c6343000818000a00000000000000000000000000000000f9490004c11cef243f5400493c00ad63
Deployed Bytecode
0x60806040526004361015610022575b3615610018575f80fd5b610020611de5565b005b5f3560e01c80156100ec57806306fdde031461013757806346423aa7146101325780635b34b9661461012d5780637423eb3c1461012857806379df72bd1461012357806387201b411461011e5780638814773214610119578063a817440414610114578063a900866b1461010f578063b3a34c4c1461010a578063e7acab2414610105578063ed98a57414610100578063f07ec373146100fb578063f2d12b12146100f6578063f47b7740146100f1578063fb0f3ee1146100ec5763fd9f1e100361000e57610f46565b610191565b610ec2565b610ded565b610d89565b610cc6565b610c0a565b610b8b565b610b24565b610a72565b6108e5565b6107d6565b6105b2565b610493565b6103f0565b610372565b61032e565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc9060208282011261018d576004359167ffffffffffffffff831161018d57826102409203011261018d5760040190565b5f80fd5b61019a3661013c565b5061012435600381169060021c60018111913415830361032857600382117f0203020301010000000000000000000000000000000000000000000000000000831a61020f8160a0840260240135877d010102030000000000000000000000000000000000000000000000000000881a87611e80565b9490928060051b6101c4013596610225816106b9565b61027557505060443560243517610268576102509461024391612584565b61024b612649565b6126c5565b610258612715565b60405160018152602090f35b0390f35b636ab37ce75f526004601cfd5b61024b925061025096916102bd9161028b611201565b93848361029882956106b9565b600281036102c257506102b8916101043560e4353360843560c4356122a2565b6123b1565b61245b565b6102cb816106b9565b600381036102eb57506102b8916101043560e4353360843560c4356121af565b806102f76004926106b9565b03610312576102b891606435604435608435336024356122a2565b6102b891606435604435608435336024356121af565b34611e70565b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d57602080526707536561706f727460475260606020f35b3461018d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d576004355f526001602052608060405f20546040519060ff81161515825260ff8160081c16151560208301526effffffffffffffffffffffffffffff8160101c16604083015260881c6060820152f35b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5761042661275a565b335f525f602052602060405f2080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff43014060801c018091556040518181527f721c20121297512b72821b97f5326877ea8ecf4bb9948fea5bfcb6453074d37f833392a2604051908152f35b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5763929eee1460018154147f00000000000000000000000000000000000000000000000000000000000000019081156105a9575b5061057f575f8080807f0000000000000000000000002c023f954ac2029e8941f30defc209ef5c994c5f600a5a04fa3d1561057a573d61053b610536826111c7565b611148565b9081525f60203d92013e5b15610550575f9055005b60046040517f70a4078f000000000000000000000000000000000000000000000000000000008152fd5b610546565b60046040517ff45b98b0000000000000000000000000000000000000000000000000000000008152fd5b9050155f6104f4565b3461018d577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60208136011261018d576004359067ffffffffffffffff821161018d5761016090823603011261018d5761062663ffffffff6020921661014461061d82600401615c33565b91013590611245565b604051908152f35b9181601f8401121561018d5782359167ffffffffffffffff831161018d576020808501948460051b01011161018d57565b73ffffffffffffffffffffffffffffffffffffffff81160361018d57565b60a4359061068a8261065f565b565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b600611156106c357565b61068c565b60809080516106d6816106b9565b83528160208201519173ffffffffffffffffffffffffffffffffffffffff80931660208601526040810151604086015260608101516060860152015116910152565b9081518082526020808093019301915f5b828110610737575050505090565b909192938260e0600192604088516107508382516106c8565b8085015173ffffffffffffffffffffffffffffffffffffffff1660a0840152015160c082015201950193929101610729565b909291604082019160408152845180935260608101926020809601905f5b8181106107c0575050506107bd9394506020818403910152610718565b90565b82511515865294870194918701916001016107a0565b60e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5767ffffffffffffffff60043581811161018d5761082190369060040161062e565b505060243581811161018d5761083b90369060040161062e565b505060443581811161018d5761085590369060040161062e565b505060643590811161018d5761086f90369060040161062e565b505061088861087c61067d565b60c4359060843561105c565b9061026460405192839283610782565b60207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc82011261018d576004359067ffffffffffffffff821161018d576108e19160040161062e565b9091565b3461018d576108f336610898565b5050600461090b63ffffffff600435166004016115e1565b9061091461275a565b8151905f92361515935b8381106109315760405160018152602090f35b61093b81836116ac565b519081519184608084015161094f816116c0565b610958816116c0565b14610a5757825173ffffffffffffffffffffffffffffffffffffffff169261097f81612dad565b610991815f52600160205260405f2090565b9461099d8a8784612e07565b506109b06109ac875460ff1690565b1590565b6109c4575b50505050600191505b0161091e565b60608301515161014084015103610a5257600195610a0c610a37928460207ff280791efe782edcf06ce15c8f4dff17601db3b88eb3805a0db7d77faf757f0498015191612ec8565b60017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00825416179055565b610a46604051928392836117f1565b0390a15f8080806109b5565b612ebb565b50600191506109be565b9060206107bd928181520190610718565b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5760043567ffffffffffffffff80821161018d57610abc368360040161062e565b505060243590811161018d5761026491610b1091610add368260040161062e565b5050610b08610af563ffffffff8094166004016118e9565b92610afe6111a4565b9216600401611948565b9033926119ce565b604051918291602083526020830190610718565b3461018d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5773ffffffffffffffffffffffffffffffffffffffff600435610b748161065f565b165f526002602052602060405f2054604051908152f35b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60408136011261018d576004359067ffffffffffffffff821161018d57604090823603011261018d57610c00610bec63ffffffff60209316600401611aa3565b610bf46111a4565b90339160243591611bf5565b6040519015158152f35b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60808136011261018d576004359067ffffffffffffffff9081831161018d5760a090833603011261018d5760243590811161018d5761026491610cb491610c75368260040161062e565b5050610ca460643592610c878461065f565b610c9a63ffffffff809216600401611d2f565b9216600401611426565b9133811502019160443591611bf5565b60405190151581529081906020820190565b60a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d57600467ffffffffffffffff813581811161018d57610d103682850161062e565b50506024359082821161018d57610d293683860161062e565b505060443592831161018d57610d7a61088894610d483686830161062e565b5050610d5c63ffffffff80941682016118e9565b92610d7281610d696111a4565b961683016114b5565b9516016114b5565b60843593339360643593611514565b3461018d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d576020610626600435610dc98161065f565b73ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f205490565b60807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d5767ffffffffffffffff6004803582811161018d57610e373682840161062e565b50506024359083821161018d57610e503683850161062e565b505060443593841161018d5761026493610eaa610eb694610e733684830161062e565b5050610e99610ea260643595610e888761065f565b63ffffffff928380921685016113c7565b97168301611426565b931601611948565b913381150201926119ce565b60405191829182610a61565b3461018d575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261018d57610ef8613c1a565b60605f5260205273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000f9490004c11cef243f5400493c00ad63166040526303312e3660635260a05ff35b3461018d57610f5436610898565b90610f5d61275a565b5f915f5b818110610f7e5783610f795760405160018152602090f35b613cf0565b80610f8c6001928486611d8e565b94610f9686611dce565b907f6bacc01dbe442496068f7d234edd811f1a5f833243e0aec824f86ab861f3c90d610fef610fc760208a01611dce565b92610fd460808b01611dd8565b60048533148733141715911417179861014061061d82615c33565b91611031611005845f52600160205260405f2090565b80547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000016610100179055565b60405192835273ffffffffffffffffffffffffffffffffffffffff908116931691602090a301610f61565b906108e1929163ffffffff9161107883600435166004016113c7565b926110898160243516600401611426565b6110a961109c83604435166004016114b5565b92606435166004016114b5565b92338115020194611514565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6040519060a0820182811067ffffffffffffffff82111761110257604052565b6110b5565b60405190610160820182811067ffffffffffffffff82111761110257604052565b604051906040820182811067ffffffffffffffff82111761110257604052565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f604051930116820182811067ffffffffffffffff82111761110257604052565b67ffffffffffffffff81116111025760051b60200190565b6040516020810181811067ffffffffffffffff821117611102576040525f815290565b67ffffffffffffffff811161110257601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b611209611128565b90602082526020828136910137565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b91909161014081018051917fa66999307ad1bb4fde44d13a5d710bd7718e0c87c1eef68a571629fbf5b93d02604051604083018051928351926020809501905f915b868684106113865750505050506040519160051b8220917f42d81c6929ffdc4eb27a0808e40e82516ad42296c166065de7f812492304ff6e9093606086019481865101905f915b8a83106113445750505050507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08660051b604051209401978851907ffa445660b7e21515a59617fcd68910b487aa5808b8abda3d78bc85df364b2c2f8a5282519383528451958552865261018089209852525252565b8380827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0600194510180519089815260e08120875252019201920191906112ce565b80827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0600194510180519088815260c0812087525201920192019190611287565b9081359163ffffffff90641fffffffe08460051b1690604051906020936020848401016040528083971683525f5b84811061140457505050505050565b8061141a87848180958801013516860101611d2f565b828287010152016113f5565b9081359063ffffffff92600593641fffffffe08460051b16906040805191602094858585010183528184981684525f5b8581106114695750505050505050909150565b8083888093850101351683018551908360a091828401895287608093848484018737820135160101908d60018884351601901b8851928184018a52833782015282828801015201611456565b9081359163ffffffff90641fffffffe08460051b1690604051906020936020848401016040528083971683525f5b8481106114f257505050505050565b8061150887848180958801013516860101612879565b828287010152016114e3565b96948093949296611528923615908a6128d4565b93909186519082519261154361153e8585612cee565b612d4b565b98865f5b8b8d8783106115ab5750505050505f5b8481106115735750505050508461156f9495966147a8565b9190565b806115a48b611590868f611589600197896116ac565b5190614665565b61159d88850180936116ac565b528c6116ac565b5001611557565b826115c76001956115cd936115c0848a6116ac565b519061461f565b926116ac565b526115d8818d6116ac565b50018790611547565b9081359163ffffffff641fffffffe08460051b1690604090815190602094858584010184528183981683525f5b85811061161e5750505050505050565b80838880938501013516830161165d838851928984016101a085018b5261164e81848b8186013516850101613046565b8452878a820135160101613078565b838201528282870101520161160e565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b8051156116a75760200190565b61166d565b80518210156116a75760209160051b010190565b600511156106c357565b5160058110156106c35790565b9081518082526020808093019301915f5b8281106116f6575050505090565b909192938260a06001928751805161170d816106b9565b82528084015173ffffffffffffffffffffffffffffffffffffffff1684830152604080820151908301526060808201519083015260809081015190820152019501939291016116e8565b9081518082526020808093019301915f5b828110611776575050505090565b909192938260c06001928751805161178d816106b9565b82528084015173ffffffffffffffffffffffffffffffffffffffff9081168584015260408083015190840152606080830151908401526080808301519084015260a091820151169082015201950193929101611768565b9060058210156106c35752565b9081526040602082015261181e60408201835173ffffffffffffffffffffffffffffffffffffffff169052565b602082015173ffffffffffffffffffffffffffffffffffffffff1660608201526101806040830151611895611861610160928360808701526101a08601906116d7565b60608601517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08683030160a0870152611757565b936118a8608082015160c08601906117e4565b60a081015160e085015260c081015191610100928386015260e082015192610120938487015282015192610140938487015282015190850152015191015290565b9081359163ffffffff90641fffffffe08460051b1690604051906020936020848401016040528083971683525f5b84811061192657505050505050565b8061193c87848180958801013516860101611aa3565b82828701015201611917565b9081359163ffffffff641fffffffe08460051b1690604090815190602094858584010184528183981683525f5b8581106119855750505050505050565b8083888093850101351683016119be838851928984018a526119af82898184013516830101612879565b8452878a820135160101612879565b8382015282828701015201611975565b939290816119e39186519036151590886128d4565b9190805160051b6040017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe082018051907f4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e76020936020835282a152845190611a4a82612d4b565b955f5b838110611a68575050505083611a649495966147a8565b5090565b80611a87818c611a7a600195876116ac565b5187815191015191614bed565b611a91828b6116ac565b52611a9c818a6116ac565b5001611a4d565b906040516102008101604052611ae9819360a08301808452611acf63ffffffff91828435168401613046565b600160208501526001604085015260208201351601613078565b6060820152608060405191602083016040525f83520152565b611b0a611128565b9060018252815f5b60209081811015611b9557602091611b286110e2565b90611b31611107565b5f81525f828201526060905f60408381840152838084015260809282848201528260a08201528260c08201528260e0820152826101008201528261012082015282610140820152865281858701528501528180850152830152828501015201611b12565b505050565b611ba2611128565b600181529060203681840137565b90611bbd6105368361118c565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0611beb829461118c565b0190602036910137565b909192611cfd93825192608084015191611c0e836116c0565b611c17836116c0565b60048314611c248161315c565b36151590611c5d611c3583866131d2565b93919290929a611c43611b02565b88611c4d8261169a565b52611c578161169a565b506133d1565b611c698884848c61353b565b611c7a611c74611b9a565b976116c0565b611d0a578593611ca08694611ca8948a94611c9a8e611cb89c819c6136db565b8961383b565b505b88613944565b82611cb28361169a565b52613a36565b815173ffffffffffffffffffffffffffffffffffffffff165b602083015173ffffffffffffffffffffffffffffffffffffffff16906060604085015194015194613b3b565b611d05612715565b600190565b505084965091611ca8611d27611cb895939460808401518961361c565b978894611ca2565b9060405161020081016040526080611d898294604060208201602086013760a08401808552611d6863ffffffff91828435168401613046565b611d79816060840135168301613078565b6060860152838201351601613078565b910152565b91908110156116a75760051b810135907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffea18136030182121561018d570190565b356107bd8161065f565b35600581101561018d5790565b7f000000000000000000000000000000000000000000000000000000000000000180611e51575b15611e1357565b63929eee14805480159182611e42575b5060031415901516611e3157565b63a61be9f05f52346020526024601cfd5b6002905c03611e31575f611e23565b600263929eee145c0315611e0c5763a61be9f05f52346020526024601cfd5b63a61be9f05f526020526024601cfd5b93929190611e8c6130a2565b611e94613cfd565b6101643561014435428211154282111761219c57505061020435610264351061218f57927f42d81c6929ffdc4eb27a0808e40e82516ad42296c166065de7f812492304ff6e6080528360a0526060602460c037604060646101203760e0608090812061016052600161026435016102043560051b6102a08101919091526102c081019586526024906102e00137610160938260a0528360c0525f60e0525f915f5b8261020435821015611f925790604060019261010060a060208560061b99818b610284018537858b61028401610120376102a48b0135179c019760e0608020895201978989528a60c0840152610284019101370195929195611f35565b509550969590916001610204350160051b610160206060525b8261026435871015611fea5790604060a060019301948686528760c08201526101008960061b610284019101376102a48760061b013517950194611fab565b5092509593505073ffffffffffffffffffffffffffffffffffffffff915011612182577fa66999307ad1bb4fde44d13a5d710bd7718e0c87c1eef68a571629fbf5b93d026080528060a052606060c460c03760206101046101203760c06080205f5260205f2060e0526103c0608435916120818373ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b547ffa445660b7e21515a59617fcd68910b487aa5808b8abda3d78bc85df364b2c2f6080526040608460a03760605161010052856101205260a0610144610140376101e090815261018060808181206102043560051b928301818152336101a08501526101c084019290925261012083850152600161020084015261022083019490945292949060609060c49061024001377f9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f3160a06102643502938460a435940190a35f6060526102043560051b010160405261156f61216a61216383613d53565b9483613d9e565b93710100000000000000000000000000000100019055565b6339f3e3fd5f526004601cfd5b63466aa6165f526004601cfd5b6321ccfeb75f526020526040526044601cfd5b9590919293946121be86613e6f565b6121c88183613e83565b806121d857505061068a94613f63565b90606495969493929160208251145f1461228f5760c0906001906040845260208401527f4ce34aa2000000000000000000000000000000000000000000000000000000006040840152602060448401526001888401525b02019360037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc48601527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe48501526004840152602483015260448201520152565b5060c0868201600181510180915261222f565b919396959092946122b38183613e83565b806122d3575050600186036122cd5761068a949550614071565b85614061565b81519697966064969395939492919060200361238c5760c0906001906040845260208401527f4ce34aa2000000000000000000000000000000000000000000000000000000006040840152602060448401526001888401525b02019360027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc48601527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe48501526004840152602483015260448201520152565b5060c0868201600181510180915261232c565b919082039182116123ac57565b611218565b919082156124485760843592610104353360c43560e4355b612443578360051b6101e40335936102643560061b905f5b8281106123f6575050509561068a9596614133565b87876102848301358c85612422575b9184939161241c936102a46040970135908a614133565b016123e1565b989181612436604096959361241c9561239f565b9a91935091939450612405565b610268565b33926064356084356024356044356123c9565b604081510361258157602081015160c06064830151026044019060205f73ffffffffffffffffffffffffffffffffffffffff9360405194807f00000000000000000000000000000000f9490004c11cef243f5400493c00ad631674ff00000000000000000000000000000000000000001783528484527f023d904f2503c37127200ca07b976c3a53cc562623f67023115bf311f58050596040526055600b2016946040528180526040860182865af15f519015612568577fffffffff000000000000000000000000000000000000000000000000000000007f4ce34aa20000000000000000000000000000000000000000000000000000000091160361256357505060209052565b61543d565b82612571614f3d565b63d13d53d45f526020526024601cfd5b50565b60c43592916101043560e43560843583156126005761068a95966125a784613e6f565b604051957f4ce34aa200000000000000000000000000000000000000000000000000000000875260206004880152600160248801526044870152606486015260848501523360a485015260c484015260e4830152614272565b9195925092806126116002926106b9565b03612631576001850361262b5761068a9394503391614071565b84614061565b9084929161264261068a9596613e6f565b3391613f63565b346064355f6102643560061b5b80821061268d575050818111612688576126728160843561435b565b80821161267d575050565b61068a91033361435b565b6126b8565b9092836102840135938185116126b8576126b18560409303956102a483013561435b565b0190612656565b638ffff9805f526004601cfd5b919060a435908133141590600460018211911016166126e357505050565b61270f92601c83516317b1f9428552600163ffffffff82165263fb5014fc60605260801c930191614390565b5f606052565b7f00000000000000000000000000000000000000000000000000000000000000016127515763929eee1480541561274c5760019055565b5f905d565b5f63929eee145d565b7f0000000000000000000000000000000000000000000000000000000000000001806127b9575b1561278857565b63929eee1480549081156127ae575b506001106127a157565b637fa8a9875f526004601cfd5b5c6127a1575f612797565b63929eee145c1561278157637fa8a9875f526004601cfd5b90813563ffffffff811692604051938085526020641fffffffe0819460051b16860101928392602060a080940291018537602086015b8381106128175750505050604052565b848152938201938101612807565b90813563ffffffff811692604051938085526020641fffffffe0819460051b16860101928392602060c080940291018537602086015b83811061286b5750505050604052565b84815293820193810161285b565b908135916040926040519363ffffffff82168552602080641fffffffe08460051b16870101936020643fffffffc0869560061b1691018537602086015b8381106128c65750505050604052565b8481529382019381016128b6565b939492915f946128e26130ff565b5f357c4000000000000000000000000000000000000000000000000000000000169681519361291085611bb0565b9860205b6001870160051b8110612b5757507c400000000000000000000000000000000000000000000000000000000114612b5257612954908392969594936133d1565b5f946020945b6001850160051b8610612979575050505050501561297457565b614612565b909192939495868a01918251918215612b435788860151938215612ad057878d8b608060046129aa828b51016116ca565b6129b3816116c0565b14612ae75750916109ac91877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6129ef9560051c01918a61447b565b612ad0576020850190612a556109ac612a1784516effffffffffffffffffffffffffffff1690565b60408901516effffffffffffffffffffffffffffff1690612a398d8b516145dc565b916effffffffffffffffffffffffffffff80911691168961383b565b612ab957505050907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff612aa5925b01925184611cd1825173ffffffffffffffffffffffffffffffffffffffff1690565b6001602081975b019594939291905061295a565b602093955060019450905f80929b939b5252612aac565b6001935060208093955f80939c949c520152612aac565b915050612afc9295508651908701519061361c565b8093528215612b315750907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff612aa592612a83565b97600192505f60208093950152612aac565b97602091935060019250612aac565b61446e565b8a81860151612b6688826131d2565b6effffffffffffffffffffffffffffff821660208501529093909291908415612ce1576effffffffffffffffffffffffffffff84166040840152850152805160a08101519160c082015191608001519e8f612bc0816116c0565b600110179e815160400151908151905f925b828410612c6b5750505050606090510151938451945f5b868110612c0157505050505050506020905b01612914565b80612c0e600192846116ac565b516080810160a0612c2182518b896143f9565b92612c4a60608201948c8651865181145f14612c5a5750508086525b8a8c36151592885161442b565b8094520190815190525201612be9565b612c64918c6143f9565b8652612c3d565b90919299612c798b836116ac565b519060048410825110179a608082018051612c95908b8d6143f9565b92606001908a8251948d835187145f1496612cc493600198612cd1575050508084525b8a8c361592865161442b565b8092525201929190612bd2565b612cda926143f9565b8452612cb8565b5050505050602090612bfb565b919082018092116123ac57565b604051906060820182811067ffffffffffffffff821117611102576040525f604083612d256110e2565b838152836020820152838382015283606082015283608082015281528260208201520152565b90612d586105368361118c565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0612d86829461118c565b01905f5b828110612d9657505050565b602090612da1612cfb565b82828501015201612d8a565b6060810151516101408201511161218f5780612e0173ffffffffffffffffffffffffffffffffffffffff6107bd93511673ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f205490565b90611245565b91905460ff8160081c16612e63576effffffffffffffffffffffffffffff8160101c169081612e3a575b50505050600190565b60881c1115612e4a578080612e31565b612e5357505f90565b6310fda3e15f526020526024601cfd5b50612e6d57505f90565b631a5155745f526020526024601cfd5b91905460ff8160081c16612e63576effffffffffffffffffffffffffffff915060101c16612eab5750600190565b63ee9e0e635f526020526024601cfd5b632165628a5f526004601cfd5b92919033841461304057612eda613c1a565b93612f1482867f19010000000000000000000000000000000000000000000000000000000000005f5260025260225260425f20905f602252565b908351926002601f601d860116106102e27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9d860110165f146130325760018085169081604103927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbf60059388010160051c93808952880160209384820151928560238560e81c94019460e31c169081528584519118526001925b8684106130135750505050509661300d9161068a9798612fd160405f209261570a565b5f525260405f20907f19010000000000000000000000000000000000000000000000000000000000005f5260025260225260425f20905f602252565b90614a07565b85859101938684821c841b1660405f2081528786519118520192612fae565b5061068a9495508190614a07565b50509050565b611d8960609161016081853763ffffffff6130688160408401351683016127d1565b6040860152838201351601612825565b9060206040519263ffffffff813563ffffffe0601f82011692848401908737168452830101604052565b7f00000000000000000000000000000000000000000000000000000000000000016130ee5763929eee14805480156130e1576001036127a15760029055565b50805c6127a1576001905d565b63929eee14805c6127a1576001905d565b7f000000000000000000000000000000000000000000000000000000000000000161314b5763929eee148054801561313e576001036127a15760039055565b50805c6127a1576002905d565b63929eee14805c6127a1576002905d565b7f00000000000000000000000000000000000000000000000000000000000000016131ab5763929eee14908154801561319d576001036127a1576002019055565b50815c6127a157600101905d565b63929eee1490815c6127a157600101905d565b90805b6131c9575090565b809106806131c1565b9190918051916131ef6109ac8560a086015160c087015190614d1d565b6133bc576effffffffffffffffffffffffffffff6020816020850151169482604086015116946080820160048151613226816116c0565b61322f816116c0565b146133a35787158789111761339e575191613249836116c0565b600180931615878910166133995761326081612dad565b986132816109ac6132798c5f52600160205260405f2090565b92838d612e07565b61338b5754918960ff841615613357575b5050508060881c918483159260101c1691156132b0575b5050505050565b86979614613343578187146133265786829102950295029385019484861185870302809103958386116132e4575b806132a9565b856132fe926132f8929894959798036131be565b826131be565b8015018091049404928311613315578080806132de565b601190634e487b715f52526024601cfd5b925050508291939201828082119103029003915f808080806132a9565b8103955093505f91508190508080806132a9565b606061337a613383945173ffffffffffffffffffffffffffffffffffffffff1690565b92015191612ec8565b5f8089613292565b505f97508796505050505050565b614d4b565b614d3e565b50505050509250600191021861339e5760019081908290565b5f9350839250829150565b600211156106c357565b81518151925f5b82811061346f575050505f5b8281106133f057505050565b806133fd600192846116ac565b5161343161341d60208301516effffffffffffffffffffffffffffff1690565b6effffffffffffffffffffffffffffff1690565b15613469576134639051604060808201519161344c836116c0565b61345b83606083015187614e36565b015183615d44565b016133e4565b50613463565b61347981836116ac565b518051868110156135285761348e90866116ac565b516020906134b061341d838301516effffffffffffffffffffffffffffff1690565b1561351d57519060409081830151918401519263bfb3f8ce918501516134d5816133c7565b6134de816133c7565b61350a575b5081518310156135025750916134fc9160019493614d74565b016133d8565b5f526004601cfd5b9050606091500151636088d7de5f6134e3565b5050506001906134fc565b6020820151613536816133c7565b614d58565b60a08082015160c0830151604084018051513615985f989597959492895b8381106135d7575050505060809660046080870151613577816116c0565b1016612b52576060948501805151981593905f5b8a811061359f575050505050505050505050565b808a8a8a8a6135cb8b8b8b8b6135b860019b8d516116ac565b51968701958651998801998a5190614e92565b9052015190520161358b565b82888d838551906135e7916116ac565b519d8e516135f4816106b9565b15179d60608101918a8a8d85519460800196875161361196614e92565b905252600101613559565b919091606081019182515161014083015103612ebb575f8061365c613655855173ffffffffffffffffffffffffffffffffffffffff1690565b9685614ed1565b9082885af19361368a8173ffffffffffffffffffffffffffffffffffffffff165f52600260205260405f2090565b9081549160018301905560601b1893156136c25750604001906136b08251825190615c7f565b9390916136bc57525290565b84614f86565b9150506136ce57505f90565b6136d6614f3d565b614f86565b91825190608082015160058110156106c357602083019261372073ffffffffffffffffffffffffffffffffffffffff9283865116331415906004600182119110161690565b61372d575b505050505050565b61381a601c91608061382c980151965f6040519889936301e4d72a85526020808601528860408601523360608601528051608086015260a081015161012086015261014060c08201518187015260e08201516101608701528060a08701526138016040830151936137d76137a761018096878b0190615b45565b80850160c08b01526137c2606087015188838d010190615bb9565b019184830160e08b015286838b010190615ba0565b0193610100928501838901528085890101946137f38689615c03565b016101648101980101604052565b828660401b8d60801b1717910152525160051b9061239f565b9463fb5014fc60605201925116614390565b5f6060525f8080808080613725565b61384d815f52600160205260405f2090565b935f938554948560881c90811561393a57506effffffffffffffffffffffffffffff809660101c1681831461392b578282910292029402019383851190808511818711176138f3575b505b6138b057505060881b9060101b176001179055600190565b92509250505f146138ee576040517f10fda3e10000000000000000000000000000000000000000000000000000000081526004810191909152602490fd5b505f90565b93946138ff86826131be565b80150180910495049380851190861117613919575f613896565b634e487b715f5260116020526024601cfd5b92955050920192828411613898565b9550509293613898565b92919092613950611201565b916040820190815151915f5b8381106139ed5750505050606080910190815151915f5b83811061399c575050505061398991925061245b565b47806139925750565b61068a903361435b565b6139a78183516116ac565b5190858883516139b6816106b9565b6139bf816106b9565b156139da575b906139d491600194339061516a565b01613973565b50504784830151116126885785886139c5565b80613a30876139ff60019486516116ac565b51866080820152613a24895173ffffffffffffffffffffffffffffffffffffffff1690565b6101208a01519161516a565b0161395c565b919091805192608084019182519260058410156106c357613a846020870194613a73865173ffffffffffffffffffffffffffffffffffffffff1690565b331415906004600182119110161690565b15613aaf575050613a9d9061010061270f950151615416565b9290915163fb5014fc5b606052614390565b60049195935051613abf816116c0565b613ac8816116c0565b03613af55761270f93613ae89183519360808560601b9301519086615392565b9290916393979285613aa7565b50505050565b9081518082526020808093019301915f5b828110613b1a575050505090565b909192938260a082613b2f60019489516106c8565b01950193929101613b0c565b9094939173ffffffffffffffffffffffffffffffffffffffff91604090604051956080926080880192885285602092166020890152608060408901528651809352602060a089019701935f915b848310613bd6575050505050508282859493613bd193867f9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31989603606087015216971695613afb565b0390a3565b90919293949784836001928b518051613bee816106b9565b8252808401518c1684830152858101518683015260609081015190820152019901959493019190613b88565b467f000000000000000000000000000000000000000000000000000000000000210503613c65577f1965c52d779fea3b2c530bc1bbedc135c9671ade2fa4748307d92dbcdb47b2e090565b6040516080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f5f527f32b5c112df393a49218d7552f96b2eeb829dfb4272f4f24eef510a586b85feef6020527f95f740a33d720b7cd93c75d515ac95ca3bbaa2594cce46ea48e00974ea8fcd14604052466060523060805260a05f20916040525f60605260805290565b63fed398fc5f526004601cfd5b7401000000000000000000000000000000000000000060243560c4351760a43560843517171060186101243510166102643560061b61026001610244351461024061022435146020600435141616161561218257565b90815f52600160205260405f2091613d6e3615158483612e7d565b5060ff83541615613d7c5750565b61068a90613d95602463ffffffff610244351601613078565b90608435612ec8565b91905f9260a43591823314159060046001821191101616613dbd575050565b9092506102043560051b90613e5d82608001926301e4d72a8452602060a08201528260c08201523360e082015260843561010082015260606101446101a08301376101e06101408061012084015282015260a06102643502956102a08701610160830152868201935f6103608601526102c08801610180840152806103a06103808701965f8852015263fb5014fc606052609c6103048901930191614390565b5f60605261032482940160801b179052565b15613e7657565b6391b3e5145f526004601cfd5b90602082015103613e915750565b61068a9061245b565b9060649492939160208251145f14613f505760c0906001906040845260208401527f4ce34aa2000000000000000000000000000000000000000000000000000000006040840152602060448401526001878401525b02019260017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc48501527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe4840152600483015260248201525f60448201520152565b5060c08582016001815101809152613eef565b9293919091833b1561405057604051946080519260a0519460c051967ff242432a000000000000000000000000000000000000000000000000000000005f528160045282602452836044528460645260a06084525f60a4525f8060c48180855af115613fe057505050505060805260a05260c0526040525f606052565b883d614004575b5063f486bc875f5260205260405260605260805260a05260a4601cfd5b601f3d0160051c9060051c908060030291808211614037575b505060205a91011061402f5785613fe7565b3d5f803e3d5ffd5b8080600392028380020360091c9203020101868061401d565b83635f15d6725f526020526024601cfd5b6369f958275f526020526024601cfd5b929190833b1561405057604051937f23b872dd000000000000000000000000000000000000000000000000000000005f528160045282602452836044525f8060648180855af1156140c957505050506040525f606052565b843d6140ef575b5063f486bc875f52602052604052606052608052600160a05260a4601cfd5b601f3d0160051c9060051c90806003029180821161411a575b505060205a91011061402f57846140d0565b8080600392028380020360091c92030201018580614108565b9394909461414084613e6f565b61414a8183613e83565b80614264575050604051937f23b872dd000000000000000000000000000000000000000000000000000000005f5280600452816024528260445260205f60648180885af1803d15601f3d1160015f51141617163d15158116156141b7575b5050505050506040525f606052565b80863b1515166141a857908691156141da5785635f15d6725f526020526024601cfd5b908591156141fc575063988919235f526020526040526060526080526084601cfd5b3d614220575b5063f486bc875f526020526040526060525f60805260a05260a4601cfd5b601f3d0160051c9060051c90806003029180821161424b575b505060205a91011061402f5784614202565b8080600392028380020360091c92030201018580614239565b9061068a9592939491613e9a565b60205f61010473ffffffffffffffffffffffffffffffffffffffff9460405195807f00000000000000000000000000000000f9490004c11cef243f5400493c00ad631674ff00000000000000000000000000000000000000001784528585527f023d904f2503c37127200ca07b976c3a53cc562623f67023115bf311f58050596040526055600b20169560405282805282865af15f519015612568577fffffffff000000000000000000000000000000000000000000000000000000007f4ce34aa200000000000000000000000000000000000000000000000000000000911603612563575050565b61436482613e6f565b5f80808085855af115614375575050565b61437d614f3d565b63bc806b965f526020526040526044601cfd5b91602091935f91827fffffffff00000000000000000000000000000000000000000000000000000000825116958180525af1905f511490156143dd57156143d45750565b6080526024607cfd5b506143d4614f3d565b818102929181159184041417156123ac57565b919091828114614425578281830961441857614414916143e6565b0490565b63c63cf0895f526004601cfd5b50905090565b9392909384810361443d575050505090565b61445383614459930393420391828503906143e6565b946143e6565b83018093116123ac5781830304019015150290565b6312d3f5a35f526004601cfd5b9193929382519460808601519060058210156106c35760208701936144c473ffffffffffffffffffffffffffffffffffffffff9384875116331415906004600182119110161690565b6144d5575050505050505050600190565b6107bd976145c9836145d293601c956145b5608060409c0151958a8d519d8e6301e4d72a815260208082015201528c6060339101528c608082519101528c61012060a083015191015260a08d61014091829160c08501518382015260e085015161016082015201528d6040830151986145876145576101809b8c850190615b45565b80850160c085015261457260608701518d8387010190615bb9565b019184830160e08501528b8385010190615ba0565b01906101009282018382015289828201019485926145a5848a615c03565b019a6101648c019b830101604052565b8960401b9060801b1717910152525161239f565b60051b9061239f565b9401925116615450565b60808101519060058210156106c35773ffffffffffffffffffffffffffffffffffffffff60206001920151163314159111161790565b63d5da9a1b5f526004601cfd5b92919261462a612cfb565b938251156146545761068a9273ffffffffffffffffffffffffffffffffffffffff869216926155d1565b63375c24c15f525f6020526024601cfd5b92919092614671612cfb565b93805115614796575f92915f925f928091815160059060051b83015b8085106146be575050505050505080916060855101526146aa5750565b600103613919576391b3e5145f526004601cfd5b6020809501948551518751811015614739578190841b88010151908087510151916060928284835101519201511582518210151761478a575f918391871b0101519283019a8c8c518091019d8e9115911060011b17179b9a528c518d8a1560011461473e5750505060a090208718614739575b97969761468d565b6154c1565b83929a5090869160a0945182528b8401518c8301526040918285015183820152608080860151910152338c820152015220968401858118614780575b50614731565b855190525f61477a565b50505050979697614731565b63375c24c15f5260016020526024601cfd5b939190938051926147b884611bb0565b956147c1611201565b90600196600182510160051b6020928360205b8381106149a357505050505f5b878110614871575050506147f49061245b565b4780614861575b5061480d575b505050506107bd612715565b5f5b83811061481c5750614801565b8061483161482b8793896116ac565b51151590565b61483c575b0161480f565b61485c61484982856116ac565b518561485584826116ac565b5191613a36565b614836565b61486b903361435b565b5f6147fb565b61487b81876116ac565b518961489b61341d868401516effffffffffffffffffffffffffffff1690565b1561498f5791906148b56148af838e6116ac565b60019052565b5160408101518051905f5b82811061491f57505050606080910151908151915f5b8381106148e857505050505b016147e1565b9091929394506148f881836116ac565b5183810190815180614918575060a0015190528c949392919085016148d6565b83886156f4565b61492e818394959697936116ac565b5160806060820191825161494d575b0151905201908c949392916148c0565b608081018051908b90526149868d6149798b5173ffffffffffffffffffffffffffffffffffffffff1690565b6101208c0151908561516a565b8282015261493d565b9190505f61499d828d6116ac565b526148e2565b8083015180516060810151806149bf575b5050500184906147d4565b909193504710815115166126b857876149ff918460406149f68b8098015173ffffffffffffffffffffffffffffffffffffffff1690565b9101519161516a565b5f80806149b4565b909291925f80528451947fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101805190876041035f9060018111958615614b84575b5050851485151516978815614a7d575b505050505050505015614a6857565b614a70614f3d565b634f7fb80d5f526004601cfd5b909192939495809798508452604082527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbc8401938451957fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc082019760205f60648b519c7f1626ba7e000000000000000000000000000000000000000000000000000000009e8f8c528d520189845afa9a8b614b28575b50505050505252525f80808080808080614a59565b5f5103614b355780614b13565b3b614a7057614b775760600190604164010100000083515f1a1a15911416614b645763815e1d645f526004601cfd5b631f003d0a5f52515f1a6020526024601cfd5b638baa579f5f526004601cfd5b909150604085019081519260608701515f1a90614bbb575b8652835260205f60808560015afa50838352898552525f515f80614a49565b50601b8360ff1c017f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84168352614b9c565b9192614bf7612cfb565b9380511583511517614d1057614c0b612cfb565b92614c178483876154ce565b8351926060840194855115614d055750614c53614c4b608086015173ffffffffffffffffffffffffffffffffffffffff1690565b8884896155d1565b865193604081015160408601511890602081015160208701511890518651181717614cf55750606084519301928351105f14614cc257509160206060614caf614cbc94614ca0839761169a565b519451905185519103976116ac565b51510151910151906116ac565b51015290565b60609150614cd5614cec9195939561169a565b5160206040614caf885188519003968451906116ac565b51015251905290565b63bced929d5f526020526024601cfd5b965050505050505090565b6398e9db6e5f526004601cfd5b428082111590831116939280614d36575b61219c575050565b508315614d2e565b635a052b325f526004601cfd5b63a11b63ff5f526004601cfd5b63133c37c65f526020526024601cfd5b614d71826106b9565b52565b90614d7e916116ac565b51805191614d8b836106b9565b6003831115614e29576040820180519093908015614dec57927ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe614de692614ddf6060968787015190608088015191615af3565b0190614d68565b01519052565b50608082015151614e24576060927ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe614de692614ddf565b615ae6565b6394eb6af65f526004601cfd5b815192915f5b848110614e4a575050505050565b614e5481836116ac565b518051614e60816106b9565b60036040809301511515600488141517911116614e805750600101614e3c565b8363a8930e9a5f52602052526044601cfd5b959192939490948587145f14614eaf575050506107bd93506143f9565b92919484614ec56107bd98614ecb9497866143f9565b936143f9565b9061442b565b9190608490614f38604051916398919765835260a0601c84019633602086015260806040860152614f246060614f0e604084015185890190615b45565b9283608001828901520151838388010190615b45565b018094608082016080820152010190615ba0565b010190565b3d614f4457565b601f3d0160051c60405160051c908060030291808211614f6d575b505060205a91011061402f57565b8080600392028380020360091c92030201015f80614f5f565b63939792855f526020526024601cfd5b92909260405193815190602092602060c087028801016040528587526020918660010160051b93848901928160010160051b019781810382821002820160010160051b9111975b81851061501a5750505b838310614ff5575050505050565b60a0859183858b01526080908181863e60608501518286015201920192019190614fe7565b9390949197869084838c0152608090818b873e60608087015190818489015288015111615047878961510a565b171799019360a08091019501910194909493929194614fdd565b9290604051938051908185119482808203911002820191602092602060e0820289010160405280885260209060010160051b928389019260010160051b01915b8382106150b057505050505050565b9091929380959782848b015260a090818a853e606083818c018487013e8481015190870151608080870151908901518015911417159111176150f2858861510a565b1717980195949360c0908101939190910191016150a1565b9081519160408101518015600385111661513a575b60208091604085015114948451149301519101511416161590565b5060408201517ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe9093019261511f565b9290918351615178816106b9565b615181816106b9565b615216575050506151c56151ac602083015173ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff60408301519116176124435780606061520d608061068a94015173ffffffffffffffffffffffffffffffffffffffff1690565b9101519061435b565b90919260018151615226816106b9565b61522f816106b9565b036152a65760408101516124435761068a93615262602083015173ffffffffffffffffffffffffffffffffffffffff1690565b9073ffffffffffffffffffffffffffffffffffffffff606061529b608086015173ffffffffffffffffffffffffffffffffffffffff1690565b940151931691614133565b92600284516152b4816106b9565b6152bd816106b9565b0361532a57836152e7602061068a96015173ffffffffffffffffffffffffffffffffffffffff1690565b608082015173ffffffffffffffffffffffffffffffffffffffff169273ffffffffffffffffffffffffffffffffffffffff606060408501519401519416916122a2565b8361534f602061068a96015173ffffffffffffffffffffffffffffffffffffffff1690565b608082015173ffffffffffffffffffffffffffffffffffffffff169273ffffffffffffffffffffffffffffffffffffffff606060408501519401519416916121af565b9493919260c060a494615402614f38946040519663f4dd92ce8852601c88019a1860a088015260a060208801526153ec60606153d56040840151878b0190615b45565b928360a00160408b0152015185838a010190615bb9565b019160a083016060880152838388010190615ba0565b01809460a082016080820152010190615c03565b916125818360801c9263ffffffff601c818760401c16956317b1f942815201951690615c03565b631cf99b265f526020526040526044601cfd5b925f906020929593827fffffffff00000000000000000000000000000000000000000000000000000000825116968180525af1915f511491156154a95750156154995750600190565b63fb5014fc5f526020526024601cfd5b9050919091156154bc5750615499614f3d565b5f9150565b637fda72795f526004601cfd5b909291925f905f925f9180805160059060051b82015b8084106155005750505050505060608293945101526146aa5750565b6020979697809401938451518651811015614739578190841b8701015190808651015191606092828483510151920151158251821015176155c5575f918391871b010151928301998a519b8c81019c15908d1060011b17179a99528b518c89156001146155795750505060a090208618614739576154e4565b829950905f8493819360a0965184528186015182850152604093848701518582015260808088015191015201528d0152209583018481186155bb575b506154e4565b845190525f6155b5565b505050509695966154e4565b81519294935f93849384929091825b8160051b840181106156015750505050505060608293945101526146aa5750565b6020909796970190855182515110156147395781516020815160051b880101516020815192015160206040840151920151158251821015176156e9579060209160051b0101515f60608201998a519081158d8381011060011b17179b0199528b51871560011461569557506060902086189060408c0151610120820151189060208d01519051181717614739575b906155e0565b9160609397506040826101209351855260208101516020860152015160408401528560808401528c60208251910152015160408c01522093602084018281186156df575b5061568f565b825190525f6156d9565b50505096959661568f565b63a5f542085f526020526040526060526064601cfd5b600981106159a2576011811061585e57601581106157c057601781106157755760177f403be09941a31d05cfc2f896505811353d45d38743288b016630cce39435476a9114027f1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c1890565b60157fbb40bf8cea3a5a716e2b6eb08bbdac8ec159f82f380783db3c56904f15a43d049114027f3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d1890565b601381106158135760137f54b3212a178782f104e0d514b41a9a5c4ca9c980bf6597c3cecbf280917e202a9114027f5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e643500171890565b60117f2d7a3ed6dab270fdb8e054b2ad525f0ce2a8b89cc76c17f0965434740f673a559114027fc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d858771890565b600d811061590457600f81106158b957600f7fcc4886e37eedd9aacd6c1c2c9247197a621a71282e87a7cbc673f3736d9aa1419114027f1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde81890565b600d7f8df51df98847160517f5b1186b4bc3f418d98b8a7f17f1292f392d79d600d79e9114027f6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a8525901890565b600b811061595757600b7f32f4e7485d6485f9f6c255929b9905c62ba919758bbe231f231eaeecf33d810c9114027fbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f1890565b60097f6f0ec38c21f6f583ab7f3c5413c773ffd5344c34fde1d390958e438bf667448f9114027fd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da051890565b60058110615a4857600781106159fd5760077fb58d772fb09b426b9dece637f61ca9065f2b994f1464b51e9207f55f7c8f59489114027f7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc141890565b60057f25d02425402d882d211a7ab774c0ed6eca048c4d03d9af40132475744753b2a39114027f1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b551890565b60038110615a9b5760037ff3e8417a785f980bdaf134fa0274a6bf891eeb8195cd94b09d2aa651046e28bc9114027fa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af11890565b60017f832c58a5b611aadcfa6a082ac9d04bace53d8278387f10040347b7e98eb5b3029114027fbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde301890565b6309bde3395f526004601cfd5b9190915f5260209060205f20916020820191602081519160059260051b0101905b818410615b26575050505003615ae657565b8351808611821b9586529483189490945260405f209392820192615b14565b9081519081815260209283808083019301918460051b0101915b84838210615b72575050505060071b0190565b8160809251805185528281015183860152604080820151908601526060809101519085015201910190615b5f565b8051603f0163ffffffe016929161068a91849190615c23565b80519182815260208080808501948660051b01019201925b828110615be5575050505060a00260200190565b60a090818581835160045afa153d151761018d578201930192615bd1565b615c1f602092839283815180845260051b948593019101615c23565b0190565b829060045afa153d151761018d57565b604051906101608201604052615c71610140918281853763ffffffff615c608160408401351683016127d1565b604086015260608201351601612825565b806060840152519082015290565b90915f925f9260603d10915f905f925f905f938615615cdc575b8615615cab575b505050505050929190565b615cc4939495995060209850615cce9650880190614f96565b9590960190615061565b9092175f8080808080615ca0565b509450925060405f803e5f51926020948551943d878201113d8888011117968715615d08575b50615c99565b9450809650849192505f3e5f51908385813e835193808560a0028701013d10908360071b8801013d101761ffff8584171117955f80525f615d02565b815192915f5b848110615d58575050505050565b615d6281836116ac565b518051615d6e816106b9565b60036040809301511515600488141517911116615d8e5750600101615d4a565b8363d69293325f52602052526044601cfdfea164736f6c6343000818000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000f9490004c11cef243f5400493c00ad63
-----Decoded View---------------
Arg [0] : conduitController (address): 0x00000000F9490004C11Cef243f5400493c00Ad63
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000f9490004c11cef243f5400493c00ad63
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.